Adaptive Unscented Kalman Filter for online state, parameter, and process covariance estimation

A novel observer for state, parameter and process covariance estimation is presented in this paper. The new observer estimates system states using a Square-Root Unscented Kalman Filter (SRUKF) and by employing the Recursive Prediction-Error (RPE) method, unknown parameters and covariances are identified online. Two experimental applications based on an underactuated planar robot are included to demonstrate the algorithm performance. Additionally, sensitivity models for the SRUKF are derived. Results show that the online process covariance estimation improves the observer convergence and reduces parameter estimation bias.

[1]  Tobias Ortmaier,et al.  ESTIMATION OF COVARIANCES FOR KALMAN FILTER TUNING USING AUTOCOVARIANCE METHOD WITH LANDWEBER ITERATION , 2013 .

[2]  E. Stear,et al.  The simultaneous on-line estimation of parameters and states in linear systems , 1976 .

[3]  Torsten Söderström An On-line Algorithm for Approximate Maximum Likelihood Identificatioin of Linear Dynamic Systems , 1973 .

[4]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[5]  Jan R. Magnus,et al.  The Elimination Matrix: Some Lemmas and Applications , 1980, SIAM J. Algebraic Discret. Methods.

[6]  Masoud Hajarian The generalized QMRCGSTAB algorithm for solving Sylvester-transpose matrix equations , 2013, Appl. Math. Lett..

[7]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[8]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[9]  H. B. Mitchell,et al.  Multi-Sensor Data Fusion: An Introduction , 2007 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[12]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[13]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[14]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[15]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[16]  Tobias Ortmaier,et al.  Online parameter and process covariance estimation using adaptive EKF and SRCuKF approaches , 2015, 2015 IEEE Conference on Control Applications (CCA).

[17]  Josep M. Guerrero,et al.  Industrial Applications of the Kalman Filter: A Review , 2013, IEEE Transactions on Industrial Electronics.

[18]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[19]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[20]  T. Westerlund,et al.  Remarks on "Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems" , 1980 .

[21]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.