Two solutions to incorporate zero, successor and equality in binary decision diagrams

textabstractIn this article we extend BDDs (binary decision diagrams) for plain propositional logic to the fragment of first order logic, consisting of quantifier free logic with equality, zero and successor. We insert equations with zero and successor in BDDs, and call these objects (0,S,=)-BDDs. We extend the notion of {em Ordered} BDDs in the presence of equality, zero and successor. (0,S,=)-BDDs can be transformed to equivalent Ordered (0,S,=)-BDD s by applying a number of rewrite rules. All paths in these extended OBDDs are satisfiable. The major advantage of transforming a formula to an equivalent Ordered (0,S,=)-BDD is that on the latter it can be observed in constant time whether the formula is a tautology, a contradiction, or just satisfiable.

[1]  Natarajan Shankar,et al.  Combining Shostak Theories , 2002, RTA.

[2]  Ofer Strichman On Solving Presburger and Linear Arithmetic with SAT , 2002, FMCAD.

[3]  Ofer Strichman,et al.  Deciding Separation Formulas with SAT , 2002, CAV.

[4]  David L. Dill,et al.  Automatic verification of Pipelined Microprocessor Control , 1994, CAV.

[5]  Harald Ganzinger,et al.  Shostak Light , 2002, CADE.

[6]  Henrik Reif Andersen,et al.  Difference Decision Diagrams , 1999, CSL.

[7]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[8]  Hai Zhou,et al.  BDD Based Procedures for a Theory of Equality with Uninterpreted Functions , 2003, Formal Methods Syst. Des..

[9]  Natarajan Shankar,et al.  Deconstructing Shostak , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[10]  Randal E. Bryant,et al.  Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic , 1999, TOCL.

[11]  V. Pratt Two Easy Theories Whose Combination is Hard , 2002 .

[12]  Wilhelm Ackermann,et al.  Solvable Cases Of The Decision Problem , 1954 .

[13]  Sanjit A. Seshia,et al.  Modeling and Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions , 2002, CAV.

[14]  Amir Pnueli,et al.  Deciding Equality Formulas by Small Domains Instantiations , 1999, CAV.

[15]  Jaco van de Pol,et al.  State Space Reduction by Proving Confluence , 2002, CAV.

[16]  J. C. van de Pol,et al.  Centrum Voor Wiskunde En Informatica a Prover for the Μcrl Toolset with Applications — Version 0.1 — , 2001 .

[17]  Robert E. Shostak,et al.  An algorithm for reasoning about equality , 1977, CACM.

[18]  Jan Friso Groote,et al.  µCRL: A Toolset for Analysing Algebraic Specifications , 2001, CAV.

[19]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[20]  Henrik Reif Andersen,et al.  Boolean expression diagrams , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[21]  Hans Zantema,et al.  A rewriting approach to binary decision diagrams , 2001, J. Log. Algebraic Methods Program..

[22]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[23]  Aart J. C. Bik,et al.  Implementation of fourier - motzkin elimina - tion , 1994 .

[24]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[25]  Wang Yi,et al.  Efficient Timed Reachability Analysis using Clock Difference Diagrams , 1998 .

[26]  Greg Nelson,et al.  Fast Decision Procedures Based on Congruence Closure , 1980, JACM.

[27]  Jan Friso Groote,et al.  Equational Binary Decision Diagrams , 2000, LPAR.

[28]  David L. Dill,et al.  Validity Checking for Combinations of Theories with Equality , 1996, FMCAD.

[29]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.