A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method

Minimization of functionals related to Euler's elastica energy has a wide range of applications in computer vision and image processing. A high order nonlinear partial differential equation (PDE) needs to be solved, and the gradient descent method usually takes high computational cost. In this paper, we propose a fast and efficient numerical algorithm to solve minimization problems related to Euler's elastica energy and show applications to variational image denoising, image inpainting, and image zooming. We reformulate the minimization problem as a constrained minimization problem, followed by an operator splitting method and relaxation. The proposed constrained minimization problem is solved by using an augmented Lagrangian approach. Numerical tests on real and synthetic cases are supplied to demonstrate the efficiency of our method.

[1]  T. Chan,et al.  Variational image inpainting , 2005 .

[2]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[3]  Vicent Caselles,et al.  Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..

[4]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[6]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[7]  L. Ambrosio,et al.  On a Variational Problem Arising in Image Reconstruction , 2003 .

[8]  Juan Shi,et al.  Graph Cuts for Curvature Based Image Denoising , 2011, IEEE Transactions on Image Processing.

[9]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[10]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[13]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[14]  M. Kallay Method to approximate the space curve of least energy and prescribed length , 1987 .

[15]  Alfred M. Bruckstein,et al.  Discrete elastica , 1996, DGCI.

[16]  A. Bruckstein,et al.  Epi-convergence of discrete elastica , 2001 .

[17]  Michael Kallay Plane curves of minimal energy , 1986, TOMS.

[18]  Jooyoung Hahn,et al.  Segmentation and background extraction with application to e-catalogue , 2005 .

[19]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[20]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[21]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[22]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[23]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, IEEE Trans. Image Process..

[24]  Daniel Cremers,et al.  Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[25]  Selim Esedoglu,et al.  Segmentation with Depth but Without Detecting Junctions , 2004, Journal of Mathematical Imaging and Vision.

[26]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[27]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[28]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[29]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[30]  Chang-Ock Lee,et al.  Geometric attraction-driven flow for image segmentation and boundary detection , 2010, J. Vis. Commun. Image Represent..

[31]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[32]  Xuecheng Tai,et al.  A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations , 1992 .

[33]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[34]  Chang-Ock Lee,et al.  FINE SEGMENTATION USING GEOMETRIC ATTRACTION-DRIVEN FLOW AND EDGE-REGIONS , 2007 .

[35]  Patrick Pérez,et al.  Geometrically Guided Exemplar-Based Inpainting , 2011, SIAM J. Imaging Sci..

[36]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[37]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[38]  Xuecheng Tai,et al.  AUGMENTED LAGRANGIAN METHOD FOR TOTAL VARIATION RESTORATION WITH NON-QUADRATIC FIDELITY , 2011 .

[39]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[40]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[41]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[42]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[43]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[44]  L. Ambrosio,et al.  A direct variational approach to a problem arising in image reconstruction , 2003 .

[45]  Jean-Michel Morel,et al.  On a variational theory of image amodal completion , 2006 .

[46]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[47]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[48]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[49]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[50]  Steven J. Ruuth,et al.  Threshold dynamics for shape reconstruction and disocclusion , 2005, IEEE International Conference on Image Processing 2005.

[51]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[52]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[53]  Stanley Osher,et al.  Image Super-Resolution by TV-Regularization and Bregman Iteration , 2008, J. Sci. Comput..

[54]  Saïd Ladjal,et al.  Exemplar-Based Inpainting from a Variational Point of View , 2010, SIAM J. Math. Anal..

[55]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[56]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method for Generalized TV-Stokes Model , 2012, J. Sci. Comput..