In-plane-type channel drop filter in a two-dimensional photonic crystal slab

An in-plane-type channel-drop filtering device with input/output waveguides and a point defect cavity in a two-dimensional photonic crystal slab is investigated. The in-plane operation becomes possible by employing a point defect cavity with an extremely high Q factor to suppress the radiation loss for the out-of-plane direction. 60° bends are also introduced in the output waveguide to avoid interference between the input/output waveguides. The transmission frequency range of the output waveguide with bends is tuned by changing the size of the air holes at the apex of the corner so that the resonant frequency of the point defect cavity is within the transmission band. A channel drop operation with a very high resolution of 0.12 nm is successfully observed at 1.55 μm wavelengths.