An Age-Structured Within-Host Model for Multistrain Malaria Infections

In this paper we propose an age-structured malaria within-host model taking into account multistrains interaction. We provide a global analysis of the model depending upon some threshold $\mathcal T_0$. When $\mathcal{T}_0\leq1$, then the disease-free equilibrium is globally asymptotically stable and the parasites are cleared. On the contrary, if $\mathcal{T}_0>1$, the model exhibits the competition exclusion principle. Roughly speaking, only the strongest strain, according to a suitable order, survives while the other strains go to extinction. Under some additional parameter conditions we prove that the endemic equilibrium corresponding to the strongest strain is globally asymptotically stable.

[1]  Horst R. Thieme,et al.  Dynamical Systems And Population Persistence , 2016 .

[2]  R. Anderson,et al.  The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies , 1996, Parasitology.

[3]  R M May,et al.  Non-linear phenomena in host—parasite interactions , 1989, Parasitology.

[4]  S. Huijben,et al.  Transmission stage investment of malaria parasites in response to in-host competition , 2007, Proceedings of the Royal Society B: Biological Sciences.

[5]  K Dietz,et al.  Epidemiologic interference of virus populations , 1979, Journal of mathematical biology.

[6]  J. M. Ball,et al.  ASYMPTOTIC BEHAVIOUR OF DISSIPATIVE SYSTEMS (Mathematical Surveys and Monographs 25) , 1990 .

[7]  Hisashi Inaba,et al.  On a new perspective of the basic reproduction number in heterogeneous environments , 2011, Journal of Mathematical Biology.

[8]  Pierre Magal,et al.  Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems , 2008 .

[9]  Horst R. Thieme,et al.  Semiflows generated by Lipschitz perturbations of non-densely defined operators , 1990, Differential and Integral Equations.

[10]  D. Kwiatkowski,et al.  A model for estimating total parasite load in falciparum malaria patients. , 2002, Journal of theoretical biology.

[11]  Pierre Magal,et al.  Center Manifolds for Semilinear Equations With Non-dense Domain and Applications to Hopf Bifurcation in Age Structured Models , 2009 .

[12]  D. Kwiatkowski,et al.  Estimating sequestered parasite population dynamics in cerebral malaria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[14]  Pierre Magal,et al.  On semilinear Cauchy problems with non-dense domain , 2009, Advances in Differential Equations.

[15]  Xianning Liu,et al.  Lyapunov Functions and Global Stability for Age-Structured HIV Infection Model , 2012, SIAM J. Appl. Math..

[16]  G. Sell,et al.  Dynamics of Evolutionary Equations , 2002 .

[17]  R Heinrich,et al.  Mathematical modelling of the within-host dynamics of Plasmodium falciparum , 2000, Parasitology.

[18]  Jean-Claude Kamgang,et al.  Global Analysis of New Malaria Intrahost Models with a Competitive Exclusion Principle , 2011, SIAM J. Appl. Math..

[19]  B. Hellriegel Modelling the immune response to malaria with ecological concepts: short-term behaviour against long-term equilibrium , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  K. Dietz,et al.  Plasmodium falciparum parasitaemia described by a new mathematical model , 2001, Parasitology.

[21]  A. Read,et al.  Dynamics of Multiple Infection and Within‐Host Competition in Genetically Diverse Malaria Infections , 2005, The American Naturalist.

[22]  Andrew Read,et al.  Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing , 2010, Proceedings of the National Academy of Sciences.

[23]  Junjie Wei,et al.  Periodicity and synchronization in blood-stage malaria infection , 2011, Journal of mathematical biology.

[24]  Xiao-Qiang Zhao,et al.  Global Attractors and Steady States for Uniformly Persistent Dynamical Systems , 2005, SIAM J. Math. Anal..

[25]  G. Webb An operator-theoretic formulation of asynchronous exponential growth , 1987 .

[26]  T. Taylor,et al.  Return of chloroquine antimalarial efficacy in Malawi. , 2006, The New England journal of medicine.

[27]  Richard H. Elderkin Theory of nonlinear age-dependent population dynamics (Monographs and textbooks in pure and applied mathematics, vol. 89): By G.F. Webb. Dekker, New York (1985). vi+294 pp. $65.00 , 1987 .

[28]  K. Silamut,et al.  Stage-dependent production and release of histidine-rich protein 2 by Plasmodium falciparum. , 2005, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[29]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .

[30]  A. Lloyd,et al.  Reply to: Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates , 1998, Parasitology.

[31]  Samuel Bowong,et al.  Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors , 2012, Appl. Math. Comput..

[32]  S. Ruan,et al.  The within-host dynamics of malaria infection with immune response. , 2011, Mathematical biosciences and engineering : MBE.

[33]  R. Anderson Complex dynamic behaviours in the interaction between parasite population and the host's immune system. , 1998, International journal for parasitology.

[34]  V. Prendki,et al.  The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. , 2011, Blood.

[35]  S. Ruan,et al.  Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups , 2008, Journal of Differential Equations.

[36]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[37]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[38]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[39]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[40]  K. Dietz,et al.  Review of intra-host models of malaria. , 1999, Parassitologia.

[41]  Jonathan L. Mitchell,et al.  Oscillations in an Intra-host Model of Plasmodium Falciparum Malaria Due to Cross-reactive Immune Response , 2010, Bulletin of mathematical biology.

[42]  Pierre Magal,et al.  Compact attractors for time-periodic age-structured population models. , 2001 .

[43]  Matthias Hieber,et al.  Integrated Semigroups , 2003 .

[44]  M. Ferdig,et al.  Quantification of multiple infections of Plasmodium falciparum in vitro , 2012, Malaria Journal.

[45]  F. McKenzie,et al.  Age-structured red blood cell susceptibility and the dynamics of malaria infections , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Horst R Thiemea “Integrated semigroups” and integrated solutions to abstract Cauchy problems , 1990 .

[47]  G. Webb,et al.  Lyapunov functional and global asymptotic stability for an infection-age model , 2010 .

[48]  Pierre Magal,et al.  Hopf bifurcation in a size-structured population dynamic model with random growth , 2009 .

[49]  A. Read,et al.  The Ecology of Genetically Diverse Infections , 2001, Science.

[50]  D. Kwiatkowski,et al.  The regulation of malaria parasitaemia: parameter estimates for a population model , 1995, Parasitology.

[51]  Horst R. Thieme,et al.  Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators , 2011 .

[52]  C. Chiyakaa,et al.  Modelling immune response and drug therapy in human malaria infection , 2008 .