Synthèse non quadratique H∞ de contrôleurs décentralisés pour un ensemble de descripteurs flous T-S interconnectés

Dans cet article, la stabilisation non-quadratique decentralisee des systemes non-lineaires composes de n sous systemes descripteurs flous de type Takagi-Sugeno est abordee. Afin d'assurer la stabilite du systeme globale en boucle fermee et de minimiser l'effet des interconnections entre les sous systemes, le resultat principal permet la synthese d'un reseau de lois de commande decentralisees de type Compensations Paralleles Distribuees modifiees via un critere H ∞. Les conditions de stabilite, exprimees sous la forme d'un ensemble d'Inegalites Lineaires Matricielles, sont obtenues via une fonction non quadratique de Lyapunov. Finalement, un exemple numerique illustre l'efficacite de l'approche de commande decentralisee proposee. Mots-cles : Takagi-Sugeno, Descripteurs, Interconnections, LMI, Commande decentralisee.

[1]  Jun Yoneyama,et al.  Robust stability and stabilization for uncertain Takagi-Sugeno fuzzy time-delay systems , 2007, Fuzzy Sets Syst..

[2]  Kazuo Tanaka,et al.  Fuzzy descriptor systems and nonlinear model following control , 2000, IEEE Trans. Fuzzy Syst..

[3]  Bor-Sen Chen,et al.  H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems , 2001, IEEE Trans. Fuzzy Syst..

[4]  Wei-Wei Lin,et al.  Decentralized PDC for large-scale T-S fuzzy systems , 2005, IEEE Transactions on Fuzzy Systems.

[5]  Y. Wang,et al.  Robust fuzzy decentralized control for nonlinear interconnected descriptor systems , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[6]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[7]  Wen-June Wang,et al.  A Novel Stabilization Criterion for Large-Scale T–S Fuzzy Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Kevin Guelton,et al.  Output feedback LMI tracking control conditions with H , 2009, Inf. Sci..

[9]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[10]  Pierre Apkarian,et al.  Parameterized linear matrix inequality techniques in fuzzy control system design , 2001, IEEE Trans. Fuzzy Syst..

[11]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  K. Guelton,et al.  An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi–Sugeno unknown-inputs observer in the descriptor form , 2008 .

[13]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[14]  Dalel Jabri,et al.  Fuzzy Lyapunov decentralized control of Takagi-Sugeno interconnected descriptors , 2009, 2009 IEEE Symposium on Computational Intelligence in Control and Automation.

[15]  Kevin Guelton,et al.  LMI Stability Conditions for Takagi-Sugeno Uncertain Descriptors , 2007, 2007 IEEE International Fuzzy Systems Conference.

[16]  Mehmet Akar,et al.  Decentralized techniques for the analysis and control of Takagi-Sugeno fuzzy systems , 2000, IEEE Trans. Fuzzy Syst..

[17]  N. Manamanni,et al.  Stabilization of uncertain Takagi-Sugeno descriptors: A fuzzy Lyapunov approach , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[18]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[19]  Kazuo Tanaka,et al.  A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions , 2007, IEEE Transactions on Fuzzy Systems.

[20]  Thierry-Marie Guerra,et al.  LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form , 2004, Autom..