Tetrahydrobiopterin (BH4) deficiency is associated with augmented inflammation and microvascular degeneration in the retina

[1]  O. Dammann,et al.  Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies , 2017, Journal of Neuroinflammation.

[2]  David J. Wilson,et al.  Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography , 2017, Scientific Reports.

[3]  E. Allen-Vercoe,et al.  Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice , 2017, Scientific Reports.

[4]  R. Lucas,et al.  Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy. , 2016, Biochimica et biophysica acta.

[5]  Z. Katušić,et al.  Hyperoxia depletes (6R)-5,6,7,8-tetrahydrobiopterin levels in the neonatal retina: implications for nitric oxide synthase function in retinopathy. , 2015, The American journal of pathology.

[6]  Jing Yu,et al.  Tetrahydrobiopterin Improves Endothelial Function in Cardiovascular Disease: A Systematic Review , 2014, Evidence-based complementary and alternative medicine : eCAM.

[7]  Joshua A. Kulas,et al.  A novel cell line from spontaneously immortalized murine microglia , 2014, Journal of Neuroscience Methods.

[8]  H. Lee,et al.  Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity , 2014, Journal of Neuroinflammation.

[9]  K. Channon,et al.  GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1. , 2014, American journal of physiology. Endocrinology and metabolism.

[10]  S. Reddy,et al.  Reactive oxygen species in inflammation and tissue injury. , 2014, Antioxidants & redox signaling.

[11]  R. Silverstein,et al.  Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. , 2013, Blood.

[12]  P. Hardy,et al.  Microglia and Interleukin-1&bgr; in Ischemic Retinopathy Elicit Microvascular Degeneration Through Neuronal Semaphorin-3A , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[13]  C. Betsholtz,et al.  The importance of microglia in the development of the vasculature in the central nervous system , 2013, Vascular cell.

[14]  J. Nathans,et al.  Norrin/Frizzled4 Signaling in Retinal Vascular Development and Blood Brain Barrier Plasticity , 2012, Cell.

[15]  E. McNeill,et al.  The role of tetrahydrobiopterin in inflammation and cardiovascular disease , 2012, Thrombosis and Haemostasis.

[16]  T. Gardiner,et al.  eNOS overexpression exacerbates vascular closure in the obliterative phase of OIR and increases angiogenic drive in the subsequent proliferative stage. , 2012, Investigative ophthalmology & visual science.

[17]  Laure Gambardella,et al.  A Computational Tool for Quantitative Analysis of Vascular Networks , 2011, PloS one.

[18]  H. Agostini,et al.  Activation of retinal microglia rather than microglial cell density correlates with retinal neovascularization in the mouse model of oxygen-induced retinopathy , 2011, Journal of Neuroinflammation.

[19]  Lois E. H. Smith,et al.  Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. , 2011, Blood.

[20]  Jing Chen,et al.  The mouse retina as an angiogenesis model. , 2010, Investigative ophthalmology & visual science.

[21]  G. Douglas,et al.  Tetrahydrobiopterin supplementation reduces atherosclerosis and vascular inflammation in apolipoprotein E-knockout mice. , 2010, Clinical science.

[22]  D. Rice,et al.  TSPAN12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/β-Catenin Signaling , 2009, Cell.

[23]  J. Nathans,et al.  Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization , 2009, Cell.

[24]  A. Stahl,et al.  Computer-aided quantification of retinal neovascularization , 2009, Angiogenesis.

[25]  M. Crabtree,et al.  GTP Cyclohydrolase I Expression, Protein, and Activity Determine Intracellular Tetrahydrobiopterin Levels, Independent of GTP Cyclohydrolase Feedback Regulatory Protein Expression , 2009, Journal of Biological Chemistry.

[26]  B. Hopkins,et al.  Thrombospondin-1 modulates VEGF-A-mediated Akt signaling and capillary survival in the developing retina. , 2009, American journal of physiology. Heart and circulatory physiology.

[27]  E. Benveniste,et al.  Thrombospondin‐1‐induced apoptosis of brain microvascular endothelial cells can be mediated by TNF‐R1 , 2009, Journal of cellular physiology.

[28]  D. Greaves,et al.  CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury–Induced Accelerated Atherosclerosis , 2008, Circulation.

[29]  W. Green,et al.  Microglial activation in human diabetic retinopathy. , 2008, Archives of ophthalmology.

[30]  F. Ruschitzka,et al.  Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia , 2007, Heart.

[31]  Renu A. Kowluru,et al.  Oxidative Stress and Diabetic Retinopathy , 2007, Experimental diabetes research.

[32]  H. Satoh,et al.  Oral Administration of Tetrahydrobiopterin Slows the Progression of Atherosclerosis in Apolipoprotein E-Knockout Mice , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[33]  T. Rabelink,et al.  Endothelial function and dysfunction: testing and clinical relevance. , 2007, Circulation.

[34]  S. Kadayıfçılar,et al.  Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. , 2006, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[35]  S. Sizmaz,et al.  Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy , 2006, Eye.

[36]  M. Leduc,et al.  Potential role of microglia in retinal blood vessel formation. , 2006, Investigative ophthalmology & visual science.

[37]  C. Sorenson,et al.  Attenuation of retinal vascular development and neovascularization in transgenic mice over‐expressing thrombospondin‐1 in the lens , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[38]  M. R. Powers,et al.  Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. , 2006, Molecular vision.

[39]  N. Sheibani Thrombospondin‐1, PECAM‐1, and Regulation of Angiogenesis , 2006, Histology and histopathology.

[40]  S. Germain,et al.  Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1–dependent microvascular degeneration , 2005, Nature Medicine.

[41]  Andrew P. McMahon,et al.  WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature , 2005, Nature.

[42]  D. Wink,et al.  Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Verma,et al.  Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[44]  T. Gardner,et al.  Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. , 2005, Diabetes.

[45]  K. Channon Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. , 2004, Trends in cardiovascular medicine.

[46]  R. Kowluru,et al.  Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. , 2004, Investigative ophthalmology & visual science.

[47]  Ulrich Schraermeyer,et al.  A central role for inflammation in the pathogenesis of diabetic retinopathy , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  N. Alp,et al.  Regulation of Endothelial Nitric Oxide Synthase by Tetrahydrobiopterin in Vascular Disease , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[49]  C. Sorenson,et al.  Thrombospondin‐1–deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia‐mediated vessel obliteration , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[50]  E. Topol,et al.  Increased Expression of Thrombospondin-1 in Vessel Wall of Diabetic Zucker Rat , 2003, Circulation.

[51]  K. Chayama,et al.  Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. , 2002, American journal of hypertension.

[52]  G. Golderer,et al.  Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. , 2002, Current drug metabolism.

[53]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[54]  T. Meinertz,et al.  Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus , 2000, Diabetologia.

[55]  J. Lawler The functions of thrombospondin-1 and-2. , 2000, Current opinion in cell biology.

[56]  D. Mooney,et al.  Thrombospondin-1 Induces Endothelial Cell Apoptosis and Inhibits Angiogenesis by Activating the Caspase Death Pathway , 2000, Journal of Vascular Research.

[57]  N. Blau,et al.  Tetrahydrobiopterin biosynthesis, regeneration and functions. , 2000, The Biochemical journal.

[58]  O. Hess,et al.  Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. , 2000, Journal of cardiovascular pharmacology.

[59]  W. Berger,et al.  Retinal vasculature changes in Norrie disease mice. , 1998, Investigative ophthalmology & visual science.

[60]  S. Heales,et al.  Tetrahydrobiopterin deficiency and brain nitric oxide synthase in thehph1 mouse , 1995, Journal of Inherited Metabolic Disease.

[61]  Lois E. H. Smith,et al.  Oxygen-induced retinopathy in the mouse. , 1994, Investigative ophthalmology & visual science.