Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron

Despite their gross morphological symmetry, animal nervous systems can perceive and process information in a left/right asymmetric manner. How left/right asymmetric functional features develop in the context of a bilaterally symmetric structure is a very poorly understood problem, in part because very few morphological or molecular correlates of functional asymmetries have been identified so far in vertebrate or invertebrate nervous systems. One of the very few systems in which a molecular correlate for functional lateralization has been uncovered is the taste sensory system of the nematode Caenorhabditis elegans, which is composed of a pair of bilaterally symmetric neurons, ASE left (ASEL) and ASE right (ASER). ASEL and ASER are similar in morphology, connectivity, and molecular composition, but they express distinct members of a putative chemoreceptor gene family and respond in a fundamentally distinct manner to taste cues. Extensive forward and reverse genetic analysis has uncovered a complex gene regulatory network, composed of transcription factors, miRNAs, chromatin regulators, and intercellular signals, that instruct the asymmetric features of these two neurons. In this review, this system is described in detail, drawing a relatively complete picture of asymmetry control in a nervous system. genesis 52:528–543, 2014. © 2014 Wiley Periodicals, Inc.

[1]  C. Chuang,et al.  Asymmetric neural development in the Caenorhabditis elegans olfactory system , 2014, Genesis.

[2]  Oliver Hobert,et al.  Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1 , 2014, Genes & development.

[3]  N. Ringstad,et al.  A Chemoreceptor That Detects Molecular Carbon Dioxide* , 2013, The Journal of Biological Chemistry.

[4]  Aravinthan D. T. Samuel,et al.  Defining Specificity Determinants of cGMP Mediated Gustatory Sensory Transduction in Caenorhabditis elegans , 2013, Genetics.

[5]  Jun Takayama,et al.  Environmental Alkalinity Sensing Mediated by the Transmembrane Guanylyl Cyclase GCY-14 in C. elegans , 2013, Current Biology.

[6]  Giorgio Vallortigara,et al.  Divided Brains: The Biology and Behaviour of Brain Asymmetries , 2013 .

[7]  O. Hobert,et al.  Embryonic Priming of a miRNA Locus Predetermines Postmitotic Neuronal Left/Right Asymmetry in C. elegans , 2012, Cell.

[8]  Stephen W. Wilson,et al.  Encoding asymmetry within neural circuits , 2012, Nature Reviews Neuroscience.

[9]  Stephen W. Wilson,et al.  Breaking symmetry: The zebrafish as a model for understanding left‐right asymmetry in the developing brain , 2012, Developmental neurobiology.

[10]  O. Hobert,et al.  Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs. , 2011, ACS chemical biology.

[11]  H. Horvitz,et al.  Replication-Coupled Chromatin Assembly Generates a Neuronal Bilateral Asymmetry in C. elegans , 2011, Cell.

[12]  B. Southgate The master and his emissary: the divided brain and the making of the western world , 2011 .

[13]  Richard J. Poole,et al.  Notch-Dependent Induction of Left/Right Asymmetry in C. elegans Interneurons and Motoneurons , 2011, Current Biology.

[14]  M. O'Meara,et al.  A Left/Right Asymmetric Neuronal Differentiation Program Is Controlled by the Caenorhabditis elegans LSY-27 Zinc-Finger Transcription Factor , 2011, Genetics.

[15]  Richard J. Poole,et al.  A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans , 2011, PLoS genetics.

[16]  Jessica R. Harrell,et al.  Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. , 2011, Developmental biology.

[17]  M. O'Meara,et al.  Maintenance of Neuronal Laterality in Caenorhabditis elegans Through MYST Histone Acetyltransferase Complex Components LSY-12, LSY-13 and LIN-49 , 2010, Genetics.

[18]  S. Lockery,et al.  Developmental control of lateralized neuron size in the nematode Caenorhabditis elegans , 2010, Neural Development.

[19]  H. Horvitz,et al.  Otx-dependent expression of proneural bHLH genes establishes a neuronal bilateral asymmetry in C. elegans , 2010, Development.

[20]  Richard J. Poole,et al.  The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in C. elegans , 2010, Development.

[21]  O. Hobert,et al.  Neuron-type specific regulation of a 3'UTR through redundant and combinatorially acting cis-regulatory elements. , 2010, RNA.

[22]  Serge Faumont,et al.  Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans , 2009, Nucleic acids research.

[23]  Sumeet Sarin,et al.  The C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification , 2009, Development.

[24]  S. Lockery,et al.  Lateralized Gustatory Behavior of C. elegans Is Controlled by Specific Receptor-Type Guanylyl Cyclases , 2009, Current Biology.

[25]  L. Rogers Hand and paw preferences in relation to the lateralized brain , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  D. Moerman,et al.  Cis-regulatory Mutations in the Caenorhabditis elegans Homeobox Gene Locus cog-1 Affect Neuronal Development , 2009, Genetics.

[27]  Oliver Hobert,et al.  Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in C. elegans , 2009, Development.

[28]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[29]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[30]  David H. Hall,et al.  C. elegans Atlas , 2008 .

[31]  Cornelia I Bargmann,et al.  Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans , 2007, Neural Development.

[32]  H. Sawa,et al.  Two βs or not two βs: regulation of asymmetric division by β-catenin , 2007 .

[33]  Richard J. Poole,et al.  Genetic Screens for Caenorhabditis elegans Mutants Defective in Left/Right Asymmetric Neuronal Fate Specification , 2007, Genetics.

[34]  Steven J. M. Jones,et al.  The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. , 2007, Genes & development.

[35]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[36]  Oliver Hobert,et al.  Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans , 2006, Current Biology.

[37]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[38]  Barry Honig,et al.  An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans , 2006, Development.

[39]  C. Walsh,et al.  Molecular approaches to brain asymmetry and handedness , 2006, Nature Reviews Neuroscience.

[40]  H. Hamada,et al.  The left-right axis in the mouse: from origin to morphology , 2006, Development.

[41]  S. Lockery,et al.  Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases , 2006, Genetics.

[42]  Oliver Hobert,et al.  A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA , 2005, Development.

[43]  Lesilee S. Rose,et al.  Asymmetric cell division and axis formation in the embryo. , 2005, WormBook : the online review of C. elegans biology.

[44]  Oliver Hobert,et al.  MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  James R Priess,et al.  Notch signaling in the C. elegans embryo. , 2005, WormBook : the online review of C. elegans biology.

[46]  Michael Levin,et al.  Left–right asymmetry in embryonic development: a comprehensive review , 2005, Mechanisms of Development.

[47]  A. R. Palmer Symmetry Breaking and the Evolution of Development , 2004, Science.

[48]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.

[49]  R. J. Hill,et al.  The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in C. elegans embryos , 2004, Development.

[50]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[51]  Oliver Hobert,et al.  A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. , 2003, Genes & development.

[52]  O. Güntürkün,et al.  Light experience induces differential asymmetry pattern of GABA- and parvalbumin-positive cells in the pigeon's visual midbrain , 2003, Journal of Chemical Neuroanatomy.

[53]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[54]  O. Hobert,et al.  Left–right asymmetry in the nervous system: the Caenorhabditis elegans model , 2002, Nature Reviews Neuroscience.

[55]  Bret J. Pearson,et al.  erratum: The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[56]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[57]  H. Yost,et al.  Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. , 2000, Development.

[58]  J. Priess,et al.  Left-right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. , 2000, Development.

[59]  T. Wakabayashi,et al.  Caenorhabditis elegans senses protons through amphid chemosensory neurons: proton signals elicit avoidance behavior , 2000, Neuroreport.

[60]  J. Thomas,et al.  A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. , 2000, Genetics.

[61]  Cornelia I. Bargmann,et al.  Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1 , 2000, Neuron.

[62]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[63]  K M O'Craven,et al.  Structural and functional brain asymmetries in human situs inversus totalis , 1999, Neurology.

[64]  G. Ruvkun,et al.  The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. , 1999, Development.

[65]  M. Futai,et al.  Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. , 1999, Neuroreport.

[66]  R. Lin,et al.  POP-1 and Anterior–Posterior Fate Decisions in C. elegans Embryos , 1998, Cell.

[67]  T. Kaletta,et al.  Binary specification of the embryonic lineage in Caenorhabditis elegans , 1997, Nature.

[68]  O. Güntürkün Morphological asymmetries of the tectum opticum in the pigeon , 1997, Experimental Brain Research.

[69]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Rothman,et al.  lin-12 and glp-1 are required zygotically for early embryonic cellular interactions and are regulated by maternal GLP-1 signaling in Caenorhabditis elegans. , 1996, Development.

[71]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[72]  J Kimble,et al.  Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. , 1991, Development.

[73]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[74]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[76]  Frances McGlannan BRAIN — Asymmetry , 1976 .

[77]  Sven Strauss,et al.  The Asymmetrical Brain , 2016 .

[78]  H. Sawa,et al.  Two betas or not two betas: regulation of asymmetric division by beta-catenin. , 2007, Trends in cell biology.

[79]  R. Camicioli Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms and Cultures , 2003 .

[80]  R. Schnabel,et al.  Specification of Cell Fates in the Early Embryo , 1997 .

[81]  Wilhelm Ludwig,et al.  Das Rechts-Links-Problem im Tierreich und beim Menschen , 1932 .