Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas

We build an accurate database of 5200 HCN and HNC rotation-vibration energy levels, determined from existing laboratory data. 20 000 energy levels in the Harris et al. (2002b) linelist are assigned approximate quantum numbers. These assignments, lab determined energy levels and Harris et al. (2002b) energy levels are incorporated in to a new energy level list. A new linelist is presented, in which frequencies are computed using the lab determined energy levels where available, and the ab initio energy levels otherwise. The new linelist is then used to compute new model atmospheres and synthetic spectra for the carbon star WZ Cas. This results in better fit to the spectrum of WZ Cas in which the absorption feature at 3.56 µm is reproduced to a higher degree of accuracy than has previously been possible. We improve the reproduction of HCN absorption features by reducing the abundance of Si to [Si/H] = –0.5 dex, however, +

[1]  J. Tennyson,et al.  The identification of HCN and HNC in carbon stars: model atmospheres, synthetic spectra and fits to observations in the 2.7–4.0 μm region , 2003, astro-ph/0306141.

[2]  J. Tennyson,et al.  Temperature dependent partition functions and equilibrium constant for HCN and HNC , 2002 .

[3]  J. Tennyson,et al.  Opacity Data for HCN and HNC from a New Ab Initio Line List , 2002 .

[4]  Jonathan Tennyson,et al.  Ab initio rotation-vibration spectra of HCN and HNC. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  G. Mellau,et al.  High-Temperature Infrared Emission Measurements on HNC. , 2001, Journal of molecular spectroscopy.

[6]  Maki,et al.  Photoacoustic Detection of New Bands of HCN between 11 390 and 13 020 cm(-1). , 2000, Journal of molecular spectroscopy.

[7]  Manfred Winnewisser,et al.  High-Temperature Infrared Measurements in the Region of the Bending Fundamental of H12C14N, H12C15N, and H13C14N , 2000 .

[8]  Y. Pavlenko Lithium lines in the spectra of M dwarfs: UX Tau C , 2000 .

[9]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[10]  Northrup,et al.  Infrared Absorption Spectroscopy of HNC in the Region 2.6 to 3.1 &mgr;m , 1997, Journal of molecular spectroscopy.

[11]  Albert,et al.  Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1 , 1996, Journal of molecular spectroscopy.

[12]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[13]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[14]  Christopher E. Dateo,et al.  Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the ÖX̃ emission spectrum , 1993 .

[15]  K. Lehmann,et al.  Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1 , 1989 .

[16]  J. Almlöf,et al.  CASSCF and CCI calculations of the vibrational band strengths of HCN , 1985 .

[17]  P. Botschwina,et al.  Spectroscopic properties of CS and HCS from ab initio calculations , 1985 .

[18]  J. Brault,et al.  The infrared spectrum of CS , 1984 .

[19]  S. Ridgway,et al.  Polyatomic species contributing to the carbon-star 3 micron band. , 1978 .

[20]  S. Ridgway,et al.  Carbon star photometry: CO and 3.2 micron bands , 1976 .

[21]  H. L. Johnson,et al.  Infrared spectra for 32 stars. , 1970 .

[22]  M. Mcdowell,et al.  Continuous Absorption by the Carbon Negative Ion. II, Free–Free Absorption , 1966 .

[23]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[24]  Y. Pavlenko Model atmospheres of red giants , 2003 .

[25]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[26]  R. Doyle The Astrophysical Significance of the Continuous Spectrum of the Hydrogen Quasi-Molecule , 1968 .

[27]  A. B.,et al.  Physik der Sternatmosphären: , 1938, Nature.