New development in extended finite element modeling of large elasto‐plastic deformations

This paper presents new achievements in the extended finite element modeling of large elasto-plastic deformation in solid problems. The computational technique is presented based on the extended finite element method (X-FEM) coupled with the Lagrangian formulation in order to model arbitrary interfaces in large deformations. In X-FEM, the material interfaces are represented independently of element boundaries, and the process is accomplished by partitioning the domain with some triangular sub-elements whose Gauss points are used for integration of the domain of elements. The large elasto-plastic deformation formulation is employed within the X-FEM framework to simulate the non-linear behavior of materials. The interface between two bodies is modeled by using the X-FEM technique and applying the Heaviside- and level-set-based enrichment functions. Finally, several numerical examples are analyzed, including arbitrary material interfaces, to demonstrate the efficiency of the X-FEM technique in large plasticity deformations. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[2]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[3]  Grégory Legrain,et al.  Stability of incompressible formulations enriched with X-FEM , 2008 .

[4]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[5]  Alain Combescure,et al.  Appropriate extended functions for X-FEM simulation of plastic fracture mechanics , 2006 .

[6]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[7]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[8]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[9]  Gerhard A. Holzapfel,et al.  Modeling 3D crack propagation in unreinforced concrete using PUFEM , 2005 .

[10]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[11]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[12]  J. Dolbow,et al.  A note on enrichment functions for modelling crack nucleation , 2003 .

[13]  S. Bordas,et al.  A simple error estimator for extended finite elements , 2007 .

[14]  Ted Belytschko,et al.  Combined extended and superimposed finite element method for cracks , 2004 .

[15]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[16]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[17]  M. Duflot A meshless method with enriched weight functions for three‐dimensional crack propagation , 2006 .

[18]  Amir R. Khoei,et al.  An extended arbitrary Lagrangian-Eulerian finite element method for large deformation of solid mechanics , 2008 .

[19]  Julien Réthoré,et al.  X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation , 2008 .

[20]  M. Jirásek,et al.  Process zone resolution by extended finite elements , 2003 .

[21]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[22]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[23]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[24]  Paul Steinmann,et al.  Towards the algorithmic treatment of 3D strong discontinuities , 2006 .

[25]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[26]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[27]  Roland W. Lewis,et al.  Adaptive finite element remeshing in a large deformation analysis of metal powder forming , 1999 .

[28]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[29]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[30]  Julien Réthoré,et al.  A combined space–time extended finite element method , 2005 .

[31]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[32]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[33]  Amir R. Khoei,et al.  Extended finite element method for three-dimensional large plasticity deformations on arbitrary interfaces , 2008 .

[34]  A. Combescure,et al.  A mixed augmented Lagrangian‐extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact , 2007 .

[35]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[36]  Locking in the incompressible limit: pseudo-divergence-free element free Galerkin , 2003 .

[37]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[38]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[39]  Amir R. Khoei,et al.  Extended finite element method in plasticity forming of powder compaction with contact friction , 2006 .

[40]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[41]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[42]  Amir R. Khoei,et al.  The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems , 2007 .

[43]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[44]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[45]  Ted Belytschko,et al.  Arbitrary discontinuities in space–time finite elements by level sets and X‐FEM , 2004 .

[46]  Marc Alexander Schweitzer,et al.  Partition of Unity Method , 2003 .

[47]  Jean-François Remacle,et al.  A substructured FE‐shell/XFE‐3D method for crack analysis in thin‐walled structures , 2007 .

[48]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[49]  T. Rabczuk,et al.  A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics , 2007 .

[50]  James G. Conley,et al.  A simulation-based design paradigm for complex cast components , 2007, Engineering with Computers.