Differential Harnack Estimates for Backward Heat Equations with Potentials under the Ricci Flow

In this paper, we derive a general evolution formula for possible Harnack quantities. As a consequence, we prove several differential Harnack inequalities for positive solutions of backward heat-type equations with potentials (including the conjugate heat equation) under the Ricci flow. We shall also derive Perelman's Harnack inequality for the fundamental solution of the conjugate heat equation under the Ricci flow.

[1]  R. Hamilton Harnack estimate for the mean curvature flow , 1995 .

[2]  Lei Ni A Note on Perelman's Li-Yau-Hamilton Inequality , 2006 .

[3]  B. Chow,et al.  The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects , 2010 .

[4]  A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow , 2002, math/0211349.

[5]  James Isenberg,et al.  Mathematics and General Relativity , 1988 .

[6]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[7]  Bennett Chow,et al.  On Harnack's inequality and entropy for the gaussian curvature flow , 1991 .

[8]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[9]  R. Hamilton,et al.  Differential Harnack Estimates for Time-Dependent Heat Equations with Potentials , 2008, 0807.0568.

[10]  H. Cao On Harnack's inequalities for the Kähler-Ricci flow , 1992 .

[11]  R. Hamilton Matrix Harnack estimate for the heat equation , 1993 .

[12]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[13]  Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds , 2002, math/0211283.

[14]  Bennett Chow,et al.  The yamabe flow on locally conformally flat manifolds with positive ricci curvature , 1992 .

[15]  B. Chow,et al.  Constrained and linear Harnack inequalities for parabolic equations , 1997 .

[16]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[17]  Christine Guenther,et al.  The fundamental solution on manifolds with time-dependent metrics , 2002 .

[18]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[19]  Qi S. Zhang,et al.  A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow , 2006, math/0611298.

[20]  R. Hamilton The Harnack estimate for the Ricci flow , 1993 .

[21]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[22]  Lei Ni,et al.  A NEW MATRIX LI-YAU-HAMILTON ESTIMATE FOR KÄHLER-RICCI FLOW , 2006 .

[23]  Lei Ni,et al.  A NOTE ON PERELMAN’S LYH TYPE INEQUALITY , 2006 .