Enhanced removal of X-ray-induced carbon contamination using radio-frequency Ar/H2 plasma

[1]  Saša Bajt,et al.  X-ray focusing with efficient high-NA multilayer Laue lenses , 2017, Light: Science & Applications.

[2]  Yifei Zhang,et al.  Cleaning of carbon-contaminated optics using O2/Ar plasma , 2017 .

[3]  N. I. Chkhalo,et al.  Effect of ion beam etching on the surface roughness of bare and silicon covered beryllium films , 2017 .

[4]  N. Chkhalo,et al.  Sputtering of carbon using hydrogen ion beams with energies of 60-800 eV , 2016 .

[5]  Franz X Kärtner,et al.  Attosecond precision multi-kilometer laser-microwave network , 2016, Light: Science & Applications.

[6]  Ji Luo,et al.  Tunable synchrotron-like radiation from centimeter scale plasma channels , 2016, Light: Science & Applications.

[7]  S. Singh,et al.  Plasma cleaning of old Indian coin in H 2 -Ar atmosphere , 2015 .

[8]  K. Mase,et al.  In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region , 2015, Journal of synchrotron radiation.

[9]  Jens Limpert,et al.  Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources , 2015, Light: Science & Applications.

[10]  I. Šics,et al.  Remote plasma cleaning of optical surfaces: Cleaning rates of different carbon allotropes as a function of RF powers and distances , 2015, 1506.04280.

[11]  F. Bijkerk,et al.  Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source , 2014, 1411.4509.

[12]  Xiaohuan Wang,et al.  Adsorption equilibrium of hydrogen on graphene sheets and activated carbon , 2014 .

[13]  Eric Pellegrin,et al.  Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning. , 2014, Journal of synchrotron radiation.

[14]  H. Barshilia,et al.  Ar+H2 plasma etching for improved adhesion of PVD coatings on steel substrates , 2012 .

[15]  F. Bijkerk,et al.  In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers , 2011 .

[16]  A. Rakhimov,et al.  Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations , 2011 .

[17]  Michael A. Lieberman,et al.  Principles of Plasma Discharges and Materials Processing, 2nd Edition , 2003 .

[18]  Charles A. Steinhaus,et al.  Atomic hydrogen cleaning of EUV multilayer optics , 2003, SPIE Advanced Lithography.

[19]  A. Bogaerts,et al.  Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge , 2002 .

[20]  Carmen García-Rosales,et al.  Erosion processes in plasma-wall interactions , 1994 .

[21]  J. Bohdansky A Universal Relation for the Sputtering Yield of Monatomic Solids at Normal Ion Incidence , 1984 .

[22]  H. F. Winters,et al.  Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching , 1979 .

[23]  R. Raju,et al.  Reflectivity degradation of grazing-incident EUV mirrors by EUV exposure and carbon contamination , 2009 .

[24]  D. Reiter,et al.  Nuclear fusion research : understanding plasma-surface interactions , 2005 .

[25]  A. Bogaerts,et al.  Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations , 2000 .

[26]  J. Küppers,et al.  A model of hydrogen impact induced chemical erosion of carbon based on elementary reaction steps , 1996 .

[27]  Wolfgang Eckstein,et al.  Computer simulation of ion-solid interactions , 1991 .