Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns

The Ti-mask selective-area growth (SAG) of GaN on Ti-nanohole-patterned GaN templates by rf-plasma-assisted molecular-beam epitaxy was employed to demonstrate the fabrication of regularly arranged InGaN/GaN nanocolumns. The SAG of GaN nanocolumns strongly depended on the growth temperature (Tg); at Tg below 900 °C, no SAG occurred, but above 900 °C, SAG occurred. However, an excessive increase in Tg to above 900 °C at a nitrogen flow rate (QN2) of 3.5 sccm brought about increased inhomogeneity in the nanocolumn shape. Upon reducing QN2 from 3.5 to 1 sccm, uniform nanocolumn arrays were successfully grown around the critical temperature of 900 °C.

[1]  K. Kishino,et al.  Stimulated emission from GaN nanocolumns , 2004 .

[2]  Takashi Fukui,et al.  Growth of highly uniform InAs nanowire arrays by selective-area MOVPE , 2007 .

[3]  Yoshinobu Aoyagi,et al.  New Technique for Fabrication of Two-Dimensional Photonic Bandgap Crystals by Selective Epitaxy , 1997 .

[4]  K. Kishino,et al.  Selective-Area Growth of GaN Nanocolumns on Si(111) Substrates Using Nitrided Al Nanopatterns by RF-Plasma-Assisted Molecular-Beam Epitaxy , 2008 .

[5]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[6]  K. Kishino,et al.  Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy , 2007 .

[7]  M. Yoshizawa,et al.  Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks , 1998 .

[8]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[9]  K. Kishino,et al.  InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate , 2004 .

[10]  F. Calle,et al.  Growth of III-nitrides on Si(1 1 1) by molecular beam epitaxy: Doping, optical, and electrical properties , 1999 .

[11]  L. Tu,et al.  Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy , 2003 .

[12]  D. Kim,et al.  Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy , 2002 .

[13]  K. Kishino,et al.  GaN/AlGaN nanocolumn ultraviolet light-emitting diodes grown on n-(111) Si by RF-plasma-assisted molecular beam epitaxy , 2008 .

[14]  Hiroto Sekiguchi,et al.  InGaN/GaN nanocolumn LEDs emitting from blue to red , 2007, SPIE OPTO.

[15]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[16]  T. Hoshino,et al.  Selective-area growth of GaN nanocolumns on titanium-mask-patterned silicon (111) substrates by RF-plasma-assisted molecular-beam epitaxy , 2008 .

[17]  A. Griol,et al.  Growth, morphology, and structural properties of group‐III‐nitride nanocolumns and nanodisks , 2007 .

[18]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .

[19]  J. Bardwell,et al.  Si (111) substrates as highly effective pseudomasks for selective growth of GaN material and devices by ammonia-molecular-beam epitaxy , 2006 .