A Front-Fixing Finite Element Method for the Valuation of American Options

A front-fixing finite element method is developed for the valuation of American options on stocks. Stability and solution nonnegativity are established under some appropriate assumptions. Numerical results are presented to examine our method and to compare it with the other methods.

[1]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[2]  Walter Allegretto,et al.  Finite Element Error Estimates for a Nonlocal Problem in American Option Valuation , 2001, SIAM J. Numer. Anal..

[3]  Ravi P. Agarwal,et al.  The One-Dimensional Heat Equation , 2009 .

[4]  Hongtao Yang Calibration of the Extended CIR Model , 2005, SIAM J. Appl. Math..

[5]  H. G. Landau,et al.  Heat conduction in a melting solid , 1950 .

[6]  Z. Wiener,et al.  Efficient Calibration of Trinomial Trees for One-Factor Short Rate Models , 2003 .

[7]  Alan G. White,et al.  The General Hull–White Model and Supercalibration , 2000 .

[8]  Donald A. French,et al.  Analysis of a robust finite element approximation for a parabolic equation with rough boundary data , 1993 .

[9]  Hongtao Yang,et al.  A Numerical Analysis of American Options with Regime Switching , 2010, J. Sci. Comput..

[10]  Riccardo Rebonato,et al.  Interest-Rate Option Models: Understanding, Analysing and Using Models for Exotic Interest-Rate Options , 1998 .

[11]  Rachid Touzani,et al.  Approximation of the heat equation in a variable domain with application to the Stefan problem , 1989 .

[12]  S. Jacka Optimal Stopping and the American Put , 1991 .

[13]  Marti G. Subrahmanyam,et al.  Pricing and Hedging American Options: A Recursive Integration Method , 1995 .

[14]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[15]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[16]  Kai Xu,et al.  REFINING THE QUADRATIC APPROXIMATION FORMULA FOR AN AMERICAN OPTION , 2001 .

[17]  L. Rogers Monte Carlo valuation of American options , 2002 .

[18]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[19]  Xiaonan Wu,et al.  A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..

[20]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[21]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[22]  F. Fabozzi Advances in Futures and Options Research , 1987 .

[23]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[24]  I. Kim The Analytic Valuation of American Options , 1990 .

[25]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[26]  Elias N. Houstis,et al.  Front-Tracking Finite Difference Methods for the Valuation of American Options , 1998 .

[27]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[28]  A. Tveito,et al.  Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .

[29]  T. Björk Interest rate theory , 1997 .

[30]  Muddun Bhuruth,et al.  A fast high-order finite difference algorithm for pricing American options , 2008 .

[31]  Xin Guo,et al.  Closed-Form Solutions for Perpetual American Put Options with Regime Switching , 2004, SIAM J. Appl. Math..

[32]  Robert J. Elliott,et al.  Numerical evaluation of the critical price and American options , 1995 .

[33]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[34]  K. Muthuraman A Moving Boundary Approach to American Option Pricing , 2007 .

[35]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[36]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[37]  D. Brigo,et al.  Interest Rate Models , 2001 .

[38]  Noelle Foreshaw Options… , 2010 .

[39]  F. Black,et al.  Bond and Option Pricing when Short Rates are Lognormal , 1991 .

[40]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[41]  Pierre Jamet Stability and Convergence of a Generalized Crank-Nicolson Scheme on a Variable Mesh for the Heat Equation , 1980 .

[42]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[43]  Hongtao Yang A NEW FINITE ELEMENT METHOD FOR PRICING OF BOND OPTIONS UNDER TIME INHOMOGENEOUS AFFINE TERM STRUCTURE MODELS OF INTEREST RATES , 2007 .

[44]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[45]  Robert J. Elliott,et al.  American options with regime switching , 2002 .

[46]  R. Mamon On the interface of probabilistic and PDE methods in a multifactor term structure theory , 2004 .

[47]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[48]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[49]  A. Jeffrey THE ONE-DIMENSIONAL HEAT EQUATION: (Encyclopedia of Mathematics and Its Applications, 23) , 1985 .

[50]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[51]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[52]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[53]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[54]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .