Symmetric Monge–Kantorovich problems and polar decompositions of vector fields
暂无分享,去创建一个
[1] E. Beckenbach. CONVEX FUNCTIONS , 2007 .
[2] Wilfrid Gangbo. An elementary proof of the polar factorization of vector-valued functions , 1994 .
[3] Eckehard Krauss. A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions , 1985 .
[4] Variational representations for N-cyclically monotone vector fields , 2012, 1207.2408.
[5] C. Villani. Topics in Optimal Transportation , 2003 .
[6] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[7] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[8] S. Rachev,et al. Mass transportation problems , 1998 .
[9] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[10] Codina Cotar,et al. Infinite-body optimal transport with Coulomb cost , 2013, Calculus of Variations and Partial Differential Equations.
[11] N. Ghoussoub,et al. A Self‐Dual Polar Factorization for Vector Fields , 2011, 1101.4979.
[12] C. Villani. Optimal Transport: Old and New , 2008 .
[13] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[14] N. Ghoussoub. Self-dual Partial Differential Systems and Their Variational Principles , 2008 .
[15] Simone Di Marino,et al. Equality between Monge and Kantorovich multimarginal problems with Coulomb cost , 2015 .
[16] G. Buttazzo,et al. Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.
[17] S. Fitzpatrick. Representing monotone operators by convex functions , 1988 .
[18] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[19] R. Lathe. Phd by thesis , 1988, Nature.
[20] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[21] Billiards, scattering by rough obstacles, and optimal mass transportation , 2012 .
[22] B. Maurey,et al. Remarks on multi-marginal symmetric Monge-Kantorovich problems , 2012, 1212.1680.
[23] Brendan Pass,et al. Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem , 2010, SIAM J. Math. Anal..
[24] Walter Schachermayer,et al. A General Duality Theorem for the Monge--Kantorovich Transport Problem , 2009, 0911.4347.
[25] Codina Cotar,et al. Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.