Improved Error Thresholds for Measurement-Free Error Correction.

Motivated by limitations and capabilities of neutral atom qubits, we examine whether measurement-free error correction can produce practical error thresholds. We show that this can be achieved by extracting redundant syndrome information, giving our procedure extra fault tolerance and eliminating the need for ancilla verification. The procedure is particularly favorable when multiqubit gates are available for the correction step. Simulations of the bit-flip, Bacon-Shor, and Steane codes indicate that coherent error correction can produce threshold error rates that are on the order of 10^{-3} to 10^{-4}-comparable with or better than measurement-based values, and much better than previous results for other coherent error correction schemes. This indicates that coherent error correction is worthy of serious consideration for achieving protected logical qubits.

[1]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[2]  Malte Schlosser,et al.  Scalable architecture for quantum information processing with atoms in optical micro-structures , 2011, Quantum Inf. Process..

[3]  Jungsang Kim,et al.  Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system , 2010, 1006.2757.

[4]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[5]  Y. C. Cheng,et al.  Microscopic quantum dynamics study on the noise threshold of fault-tolerant quantum error correction , 2005 .

[6]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[7]  Yang Wang,et al.  Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice. , 2015, Physical review letters.

[8]  V. Nebendahl Optimized quantum error-correction codes for experiments , 2014, 1411.1779.

[9]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[10]  K. Mølmer,et al.  Characterization of how dissipation and dephasing errors accumulate in quantum computers , 2015, EPJ Quantum Technology.

[11]  S. Ravets,et al.  Single-atom addressing in microtraps for quantum-state engineering using Rydberg atoms , 2014, 1406.5080.

[12]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[14]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[15]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[16]  Sergey Bravyi,et al.  Simulation of rare events in quantum error correction , 2013, 1308.6270.

[17]  Jacob F. Sherson,et al.  Quantum computation architecture using optical tweezers , 2011 .

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  M. Saffman,et al.  Rydberg blockade, Förster resonances, and quantum state measurements with different atomic species , 2015, 1508.07111.

[20]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Jason Twamley,et al.  Fault tolerance with noisy and slow measurements and preparation. , 2010, Physical review letters.

[22]  M Saffman,et al.  Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. , 2015, Physical review letters.

[23]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[24]  Chi-Kwong Li,et al.  Recovery in quantum error correction for general noise without measurement , 2011, Quantum Inf. Comput..

[25]  A. Browaeys,et al.  Free-space lossless state detection of a single trapped atom. , 2010, Physical review letters.

[26]  Klaus Mølmer,et al.  Multibit CkNOT quantum gates via Rydberg blockade , 2011, Quantum Inf. Process..

[27]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[30]  Neutral atom quantum register. , 2004, Physical review letters.

[31]  W. Marsden I and J , 2012 .

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  C. F. Roos,et al.  Optimal control of entangling operations for trapped-ion quantum computing , 2008, 0809.1414.

[34]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[35]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[36]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[37]  M. Saffman,et al.  High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses , 2016, 1605.08891.

[38]  C. Hamley,et al.  Nondestructive fluorescent state detection of single neutral atom qubits. , 2010, Physical review letters.

[39]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.