Smooth output feedback stabilization of planar systems without controllable/observable linearization

This note considers the problem of global stabilization by output feedback for a family of planar systems whose Jacobian linearization is neither controllable nor observable. The problem cannot be dealt with by existing output feedback design methods-most of them are based on the separation principle. Under appropriate growth conditions, we propose an output feedback control scheme that does not rely on the separation principle and achieves global asymptotic stabilization. The novelty of our control scheme lies in the explicit design of a dynamic output compensator, which combines a nonlinear-gain observer design and the technique of adding a power integrator. As a consequence, an interesting global stabilization result by output feedback can be obtained for feedback linearizable systems in a triangular form, which turns out to be new even in the two-dimensional case.

[1]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[2]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[3]  Wei Lin,et al.  Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm , 2002, IEEE Trans. Autom. Control..

[4]  L. Praly Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[5]  Jean-Paul Gauthier,et al.  A separation principle for bilinear systems with dissipative drift , 1992 .

[6]  Wei Lin,et al.  Robust regulation of a chain of power integrators perturbed by a lower‐triangular vector field , 2000 .

[7]  R. Marino,et al.  Dynamic output feedback linearization and global stabilization , 1991 .

[8]  M. Zeitz,et al.  On nonlinear continuous observers , 1997 .

[9]  Wei Lin,et al.  Bounded smooth state feedback and a global separation principle for non-affine nonlinear systems , 1995 .

[10]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[11]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[12]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[13]  Wei Lin,et al.  Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems , 2000 .

[14]  Gildas Besancon,et al.  State-Affine Systems and Observer-Based Control , 1998 .

[15]  W. P. Dayawansa,et al.  Recent Advances in The Stabilization Problem for Low Dimensional Systems , 1992 .

[16]  Wei Lin Input saturation and global stabilization of nonlinear systems via state and output feedback , 1995, IEEE Trans. Autom. Control..

[17]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[18]  S. Battilotti Global output regulation and disturbance attenuation with global stability via measurement feedback for a class of nonlinear systems , 1996, IEEE Trans. Autom. Control..