The MeerKAT Absorption Line Survey (MALS)

Deep galaxy surveys have revealed that the global star formation rate (SFR) density in the Universe peaks at 1 10$^{19}$ cm$^{-2}$) dust-unbiased search of intervening HI 21-cm and OH 18-cm absorption lines at 0 10$^{24}$ W Hz$^{-1}$) at 0 < z < 2, and will simultaneously deliver a blind HI and OH emission line survey, and radio continuum survey. Here, we describe the MALS survey design, observing plan and the science issues to be addressed under various science themes.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  W. Baan,et al.  Hydroxyl absorption in NGC 520, NGC 2623, and NGC 6240 , 1985 .

[3]  H. Liszt,et al.  GALACTIC OH ABSORPTION AND EMISSION TOWARD A SAMPLE OF COMPACT EXTRAGALACTIC MM-WAVE CONTINUUM SOURCES , 1996 .

[4]  R. Giovanelli,et al.  The OH Megamaser Luminosity Function , 2002, astro-ph/0204195.

[5]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[6]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[7]  Jean-Philippe Uzan,et al.  The fundamental constants and their variation: observational and theoretical status , 2003 .

[8]  C. Heiles,et al.  The Millennium Arecibo 21 Centimeter Absorption-Line Survey. III. Techniques for Spectral Polarization and Results for Stokes V , 2004 .

[9]  C. Carilli,et al.  Constraints on changes in fundamental constants from a cosmologically distant OH absorber or emitter. , 2005, Physical review letters.

[10]  Fast neutral outflows in powerful radio galaxies : a major source of feedback in massive galaxies , 2005, astro-ph/0510263.

[11]  Probing radio source environments via H i and OH absorption , 2006, astro-ph/0605423.

[12]  Cambridge,et al.  The Local Group dwarf Leo T: H i on the brink of star formation , 2007, 0711.2979.

[13]  R. Becker,et al.  The FIRST-2MASS Red Quasar Survey , 2007, 0706.3222.

[14]  F. Combes Molecular absorptions in high-z objects , 2007, astro-ph/0701894.

[15]  D. J. Saikia,et al.  A complete sample of 21-cm absorbers at z∼ 1.3: Giant Metrewave Radio Telescope survey using Mg ii systems , 2009, 0904.2878.

[16]  India.,et al.  A search for H i 21 cm absorption in strong Mg ii absorbers in the redshift desert , 2009, 0903.4487.

[17]  P. Noterdaeme,et al.  A translucent interstellar cloud at z = 2.69 - CO, H2, and HD in the line-of-sight to SDSS J123714.60 + 064759.5 , 2010, 1008.0637.

[18]  Y. Wadadekar,et al.  GMRT mini-survey to search for 21-cm absorption in quasar–galaxy pairs at z∼ 0.1 , 2010, 1007.0288.

[19]  G. Brunetti,et al.  Radio halos in future surveys in the radio continuum , 2012, 1210.1020.

[20]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[21]  J. Darling TOWARD A DIRECT MEASUREMENT OF THE COSMIC ACCELERATION , 2012, 1211.4585.

[22]  R. Braun COSMOLOGICAL EVOLUTION OF ATOMIC GAS AND IMPLICATIONS FOR 21 cm H i ABSORPTION , 2012, 1202.1840.

[23]  P. Noterdaeme,et al.  Constraining the variation of fundamental constants at z ∼ 1.3 using 21-cm absorbers , 2012, 1206.2653.

[24]  P. Noterdaeme,et al.  Parsec-scale structures and diffuse bands in a translucent interstellar medium at z 0.079 , 2012, 1210.3036.

[25]  B. M. Gaensler,et al.  FARADAY ROTATION FROM MAGNESIUM II ABSORBERS TOWARD POLARIZED BACKGROUND RADIO SOURCES , 2014, 1406.2526.

[26]  M. Murphy,et al.  Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra , 2014, 1409.4467.

[27]  Lawrence Rudnick,et al.  THE DISTRIBUTION OF POLARIZED RADIO SOURCES >15 μJy IN GOODS-N , 2014, 1402.3637.

[28]  E. Momjian,et al.  The spin temperature of high-redshift damped Lyman α systems , 2013, 1312.3640.

[29]  P. Noterdaeme,et al.  Search for cold gas in strong Mg ii absorbers at 0 . 5 < z < 1 . 5 : nature and evolution of 21-cm absorbers , 2014 .

[30]  R. Morganti,et al.  The HI absorption "Zoo" , 2014, 1411.0361.

[31]  M. Meyer,et al.  Observations of the Intergalactic Medium and the Cosmic Web in the SKA era , 2015, 1501.01077.

[32]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[33]  C. Power,et al.  The SKA as a Doorway to Angular Momentum , 2015, 1501.01048.

[34]  T. Oosterloo,et al.  HI Science with the Square Kilometre Array , 2015, 1506.04473.

[35]  J. Han,et al.  THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS , 2015, 1510.04980.

[36]  F. Fraternali,et al.  The SKA view of the Neutral Interstellar Medium in Galaxies , 2015, 1501.01211.

[37]  R. Morganti,et al.  Cool Outflows and HI absorbers with SKA , 2015, 1501.01091.

[38]  P. Noterdaeme,et al.  Neutral atomic-carbon quasar absorption-line systems at z> 1.5 - Sample selection, H i content, reddening, and 2175 Å extinction feature , 2015, 1504.07254.

[39]  J. O’Meara,et al.  Mapping kiloparsec-scale structures in the extended H i disc of the galaxy UGC 000439 by H i 21-cm absorption , 2016, 1601.00971.

[40]  M. Pracy,et al.  H I emission and absorption in nearby, gas-rich galaxies - II. Sample completion and detection of intervening absorption in NGC 5156 , 2016, 1601.03753.

[41]  R. Morganti,et al.  Kinematics and physical conditions of H I in nearby radio sources. The last survey of the old Westerbork Synthesis Radio Telescope , 2017, 1705.00492.