The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum.

[1]  L. Cutter,et al.  Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior , 2004 .

[2]  H. Okamura,et al.  Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. , 2004, Chemosphere.

[3]  P. Boyd,et al.  Selenium speciation in subantarctic and subtropical waters east of New Zealand: trends and temporal variations , 2004 .

[4]  M. Anke,et al.  Elements and their compounds in the environment , 2004 .

[5]  A. Adams,et al.  Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix? , 2003, Coral Reefs.

[6]  J. Hunt,et al.  Toxicity of Cadmium-Copper-Nickel-Zinc Mixtures to Larval Purple Sea Urchins (Strongylocentrotus purpuratus) , 2003, Bulletin of environmental contamination and toxicology.

[7]  Mark Stephenson,et al.  Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria , 2002, Environmental toxicology and chemistry.

[8]  R. Beiras,et al.  Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. , 2002, Aquatic toxicology.

[9]  M. Chiappone,et al.  Large-scale surveys on the Florida Reef Tract indicate poor recovery of the long-spined sea urchin Diadema antillarum , 2002, Coral Reefs.

[10]  C. Wood,et al.  Precautions in the use of 110mAg as a tracer of silver metabolism in ecotoxicology: Preferential bioconcentration of 109Cd by trout gills after 110mAg exposure , 2002, Environmental toxicology and chemistry.

[11]  R. Carpenter,et al.  Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Fisher,et al.  Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing , 2001, Environmental toxicology and chemistry.

[13]  Wood,et al.  PRECAUTIONS IN THE USE OF 110 MAG AS A TRACER OF SILVER METABOLISM IN ECOTOXICOLOGY : PREFERENTIAL BIOCONCENTRATION OF 109 CD BY TROUT GILLS AFTER 110 MAG EXPOSURE , 2001 .

[14]  M. Moore,et al.  Aquatic toxicology. , 2000, Therapeutic drug monitoring.

[15]  D. DeForest,et al.  Critical Review of Proposed Residue-Based Selenium Toxicity Thresholds for Freshwater Fish , 1999 .

[16]  H. Allen,et al.  Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia , 1999 .

[17]  J. Monserrat,et al.  Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). , 1999, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[18]  P. Knudsen,et al.  Copper exposure impairs intra- and extracellular acid-base regulation during hypercapnia in the fresh water rainbow trout (Oncorhynchus mykiss) , 1998, Journal of Comparative Physiology B.

[19]  K. Bruland,et al.  Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island , 1998 .

[20]  Michel Jangoux,et al.  Heavy metals in Diadema setosum (Echinodermata, Echinoidea) from Singapore coral reefs , 1997 .

[21]  S. Snedaker,et al.  Evaluation of Bioassays to Monitor Surface Microlayer Toxicity in Tropical Marine Waters , 1997, Archives of environmental contamination and toxicology.

[22]  P. Dubois,et al.  Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus lividus , 1996 .

[23]  P. Dubois,et al.  Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrass beds of the north-western Mediterranean , 1995 .

[24]  P. Campbel Interactions between trace metals and aquatic organisms : A critique of the Free-ion Activity Model , 1995 .

[25]  D. Turner,et al.  Metal speciation and bioavailability in aquatic systems , 1995 .

[26]  F. Jensen,et al.  Physiological effects and tissue accumulation of copper in freshwater rainbow trout (Oncorhynchus mykiss) under normoxic and hypoxic conditions , 1994 .

[27]  M. McBride Environmental Chemistry of Soils , 1994 .

[28]  J. Bauer,et al.  Isolation of potentially pathogenic bacterial flora from tropical sea urchins in selected west Atlantic and east Pacific sites , 1994 .

[29]  G. Cutter Kinetic controls on metalloid speciation in seawater , 1992 .

[30]  J. Donat,et al.  A new cathodic stripping voltammetric method for determining organic copper complexation in seawater , 1992 .

[31]  Naomasa Kobayashi,et al.  Marine Pollution Bioassay by Sea Urchin Eggs, an Attempt to Enhance Sensitivity , 1990 .

[32]  R. Oremland,et al.  Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments , 1990 .

[33]  Nora Ablanedo,et al.  Evaluación del erizo de mar Echinometra lucunter como indicador de contaminación por metales pesados, Cuba , 1990 .

[34]  R. Furness,et al.  Heavy Metals in the Marine Environment , 1990 .

[35]  J. Cairns,et al.  Aquatic toxicology. Part 2 , 1990 .

[36]  J. Link,et al.  Comparative sensitivity of sea urchin sperm bioassays to metals and pesticides , 1989, Archives of environmental contamination and toxicology.

[37]  H. Lessios,et al.  MASS MORTALITY OF DIADEMA ANTILLARUM IN THE CARIBBEAN: What Have We Learned? , 1988 .

[38]  R. Carpenter Mass mortality of a Caribbean sea urchin: Immediate effects on community metabolism and other herbivores. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Persoone Ecotoxicological Testing for the Marine Environment , 1986 .

[40]  D. R. Robertson,et al.  Spread of Diadema Mass Mortality Through the Caribbean , 1984, Science.

[41]  J. L. Fasching,et al.  Determination of aluminum, lead, and vanadium in North Atlantic seawater after coprecipitation with ferric hydroxide , 1984 .

[42]  B. Brown,et al.  Heavy metals and reef corals , 1984 .

[43]  R. E. Nakatani,et al.  Methodology and validation of a sperm cell toxicity test for testing toxic substances in marine waters , 1983 .

[44]  R. E. Nakatani,et al.  Development of a sperm cell toxicity test for marine waters , 1982 .

[45]  Andrew G. Dickson,et al.  The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure , 1981 .

[46]  N. Kobayashi COMPARATIVE TOXICITY OF VARIOUS CHEMICALS, OIL EXTRACTS AND OIL DISPERSANT EXTRACTS TO CANADIAN AND JAPANESE SEA URCHIN EGGS , 1981 .

[47]  N. Kobayashi Comparative sensitivity of various developmental stages of sea urchins to some chemicals , 1980 .

[48]  H. Kay Environmental Health Criteria , 1980 .

[49]  S. Sosnowski The effect of nutrition on the response of field populations of the calanoid copepod Acartia tonsa to copper , 1979 .

[50]  N. Kobayashi PRELIMINARY EXPERIMENTS WITH SEA URCHIN PLUTEUS AND METAMORPHOSIS IN MARINE POLLUTION BIOASSAY , 1977 .

[51]  J. C. Loon,et al.  Solvent extraction for use with flame atomic absorption spectrometry , 1974 .

[52]  N. Kobayashi STUDIES ON THE EFFECTS OF SOME AGENTS ON FERTILIZED SEA URCHIN EGGS, AS A PART OF THE BASES FOR MARINE POLLUTION BIOASSAY I , 1973 .

[53]  N. Kobayashi FERTILIZED SEA URCHIN EGGS AS AN INDICATORY MATERIAL FOR MARINE POLLUTION BIOASSAY, PRELIMINARY EXPERIMENTS , 1971 .

[54]  O. Hertwig,et al.  Über den Befruchtungs- und Teilungsvorgang des tierischen Eies unter dem Einfluss äusserer Agentien , 1884 .