Multiple attenuation in the image space

Multiples can be suppressed in the angle-domain image space after migration. For a given velocity model, primaries and multiples have different angle-domain moveout and, therefore, can be separated using techniques similar to the ones employed in the data space prior to migration. We use Radon transforms in the image space to discriminate between primaries and multiples and employ accurate functions describing angledomain moveouts. Since every individual angle-domain common-image gather incorporates complex 3D propagation effects, our method has the advantage of working with 3D data and complicated geology. Therefore, our method offers an alternative to the more expensive surface-related multiple-elimination (SRME) approach operating in the data space. Radon transforms are cheap but not necessarily ideal for separating primaries and multiples, particularly at small angles where the moveout discrepancy between the two kinds of events are not large. Better techniques involving signal/noise separation using prediction-error filters can be employed as well, although such approaches fall outside the scope of this paper. We demonstrate, using synthetic and real data examples, the power of our method in discriminating between primaries and multiples after migration by wavefield extrapolation, followed by transformation to the angle domain.

[1]  Antoine Guitton,et al.  Robust and stable velocity analysis using the Huber function , 1999 .

[2]  Mauricio D. Sacchi,et al.  High‐resolution velocity gathers and offset space reconstruction , 1995 .

[4]  J. Berryman,et al.  Seismic wave attenuation in fluid-saturated porous media , 1988 .

[5]  Bertrand Duquet,et al.  Filtering coherent noise during prestack depth migration , 1999 .

[6]  Antoine Guitton,et al.  Shot-profile Migration of Multiple Reflections , 2002 .

[7]  Paul Sava,et al.  Offset And Angle Domain Common-image Gathers For Shot-profile Migration , 2001 .

[8]  A. J. Berkhout,et al.  Angle-dependent reflectivity by means of prestack migration , 1990 .

[9]  D. J. Verschuur,et al.  Adaptive surface-related multiple elimination , 1992 .

[10]  Arthur B. Weglein,et al.  Multiple attenuation; an overview of recent advances and the road ahead (1999) , 1999 .

[11]  Graeme W. Milton,et al.  On characterizing the set of possible effective tensors of composites: The variational method and the translation method , 1990 .

[12]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .

[13]  Christof Stork,et al.  REFLECTION TOMOGRAPHY IN THE POSTMIGRATED DOMAIN , 1992 .

[14]  Sergey Fomel Migration and velocity analysis by velocity continuation , 2000 .

[15]  Robert G. Clapp,et al.  Multiple attenuation using a tx pattern-based subtraction method , 2001 .

[16]  Clement Kostov Toeplitz Structure In Slant-stack Inversion , 1990 .

[17]  C. Mosher,et al.  Suppression of multiple reflections using the Radon transform , 1992 .

[18]  Scott Michell,et al.  Optimizing surface-related multiple elimination on a synthetic subsalt data set , 2001 .

[19]  Biondo Biondi,et al.  Wavefield-continuation Angle-domain Common-image Gathers For Migration Velocity Analysis , 2003 .

[20]  D. J. Verschuur,et al.  3D surface multiple prediction using sparse inversion , 2001 .

[21]  Biondo Biondi,et al.  Angle-domain common image gathers by wave-equation migration , 1999 .

[22]  Mohamed T. Hadidi,et al.  Investigation of vendor demultiple technology for complex subsalt geology: 71st Annual International , 2001 .

[23]  V. Pereyra Ray tracing methods for inverse problems , 2000 .

[24]  P. Sava Prestack Stolt Residual Migration For Migration Velocity Analysis , 2000 .

[25]  Morgan P. Brown Estimation of systematic errors in tracked datasets using least squares crossing point analysis , 2001 .

[26]  Einar Kjartansson,et al.  Attenuation of seismic waves in rocks and applications in energy exploration , 1979 .

[27]  K. Marfurt,et al.  Toward true amplitude multiple removal , 1999 .

[28]  P. Herrmann,et al.  High Resolution Radon - a Review , 2001 .

[29]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .

[30]  Phase-shift migration of approximate zero-offset teleseismic data , 2003 .

[31]  Milton J. Porsani,et al.  Seismic Trace Interpolation In the F-x Domain Using Half-step Prediction Filters , 1997 .

[32]  L. Tartar,et al.  Estimation de Coefficients Homogenises , 1979 .

[33]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[34]  Arthur B. Weglein,et al.  Migration-inversion revisited (1999) , 1999 .

[35]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[36]  Biondo Biondi,et al.  Narrow-azimuth migration of marine streamer data , 2003 .

[37]  W. Symes,et al.  Robust inversion of seismic data using the Huber norm , 2003 .

[38]  Guojian Shan Source-receiver migration of multiple reflections , 2003 .

[39]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[40]  Paul Sava,et al.  Angle-domain common-image gathers by wavefield continuation methods , 2003 .

[41]  J. Berryman Elastic waves in fluid-saturated porous media , 1982 .

[42]  W. Symes,et al.  Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging , 2004 .

[43]  David M. Chase Wave propagation in liquid‐saturated open‐cell foam , 1979 .