GROUP RINGS FOR COMMUNICATIONS

This is a survey of some recent applications of abstract algebra, and in particular group rings, to the communications' areas. 1. Abstract algebra Abstract algebraic structures are fundamental building blocks for designs within the communica-

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[3]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[4]  R. Evans,et al.  Generalized Vandermonde determinants and roots of unity of prime order , 1976 .

[5]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[6]  N. Aizenberg,et al.  Algebraic aspects of threshold logic , 1980 .

[7]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[8]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[9]  P. P. Vaidyanathan,et al.  On orthonormal wavelets and paraunitary filter banks , 1993, IEEE Trans. Signal Process..

[10]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[11]  Bertrand M. Hochwald,et al.  Differential unitary space-time modulation , 2000, IEEE Trans. Commun..

[12]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[13]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[14]  C. Milies,et al.  An introduction to group rings , 2002 .

[15]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[16]  R. Guralnick,et al.  Inequalities for finite group permutation modules , 2003, math/0310169.

[17]  P. Frenkel Simple proof of Chebotarev's theorem on roots of unity , 2003, math/0312398.

[18]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  Ted Hurley,et al.  Convolutional codes from units in matrix and group rings , 2007, ArXiv.

[21]  Yehuda Lindell,et al.  Introduction to Modern Cryptography , 2004 .

[22]  Ian McLoughlin,et al.  A Group Ring Construction of the Extended Binary Golay Code , 2008, IEEE Transactions on Information Theory.

[23]  Paul Hurley,et al.  Codes from zero-divisors and units in group rings , 2009, Int. J. Inf. Coding Theory.

[24]  B. A. Sethuraman Division Algebras and Wireless Communication , 2009, ArXiv.

[25]  James E. Gentle Algorithms and Programming , 2009 .

[26]  Dennis S. Bernstein,et al.  On the equality between rank and trace of an idempotent matrix , 2010, Appl. Math. Comput..

[27]  Ted Hurley,et al.  Algebraic constructions of LDPC codes with no short cycles , 2008, Int. J. Inf. Coding Theory.

[28]  P. Hurley,et al.  BLOCK CODES FROM MATRIX AND GROUP RINGS , 2010 .

[29]  Ted Hurley,et al.  Group ring cryptography , 2011, ArXiv.

[30]  Steven M. Bellovin,et al.  Frank Miller: Inventor of the One-Time Pad , 2011, Cryptologia.

[31]  Nigel Boston Applications of Algebra to Communications, Control, and Signal Processing , 2012, SpringerBriefs in Computer Science.

[32]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[33]  Delaram Kahrobaei,et al.  Public key exchange using matrices over group rings , 2013, Groups Complex. Cryptol..

[34]  T. Hurley,et al.  Paraunitary matrices and group rings , 2014 .

[35]  Ted Hurley,et al.  Systems of MDS codes from units and idempotents , 2014, Discret. Math..

[36]  Jessica O'Shaughnessy Convolutional codes from group rings , 2014, Int. J. Inf. Coding Theory.

[37]  C. Carlet,et al.  On group rings and some of their applications to combinatorics and symmetric cryptography , 2015 .