Implications of hydrophobicity and free energy of solvation for characterization of nucleic acids by electrospray ionization mass spectrometry.

Electrospray ionization (ESI) is a dynamic process that, when coupled with mass spectrometry (MS), serves as an invaluable tool for analysis of biomolecules. Our group, as well as others, has observed that there is a bias in signal intensity for one strand of a PCR amplicon over the complementary strand in an ESI mass spectrum. In this report, we have investigated the contributions of hydrophobicity and free energy of solvation to relative signal intensities in ESI-MS spectra of nucleic acids. We developed approaches for predicting which strand of the PCR amplicon will be the most intense: one based on a rate equation for calculating ion flux using values from the literature for hydrophobicity and free energy of solvation and the other based on the percentage of the relatively hydrophilic guanines present in the strand. A trend in signal intensity for deoxyribonucleotide triphosphates, oligonucleotides, and PCR amplicons was observed that was consistent with our model. On the basis of the observation that increased hydrophobicity correlates with greater signal intensity, we selectively enhanced the signal intensity of a 20-mer with the addition of an alkyl chain to the 5' terminus, which subsequently improved the limit of detection to 1 nM, an improvement by 1 order of magnitude. This was extended to a 53-bp PCR amplicon by modifying one primer with the hydrophobic moiety, which resulted in a 16% increase in signal intensity. We capitalized on this result to determine allele frequencies from pooled DNA for single-nucleotide polymorphisms down to 1%.