The Interaction between tRNALys 3 and the Primer Activation Signal Deciphered by NMR Spectroscopy

The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys 3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys 3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys 3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys 3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription.

[1]  Mette D. E. Jepsen,et al.  Role of the primer activation signal in tRNA annealing onto the HIV-1 genome studied by single-molecule FRET microscopy. , 2013, RNA.

[2]  C. Tisné,et al.  Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. , 2012, Virus research.

[3]  J. Puglisi,et al.  Secondary structure of the HIV reverse transcription initiation complex by NMR. , 2011, Journal of molecular biology.

[4]  K. Musier-Forsyth,et al.  Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription , 2010, RNA biology.

[5]  L. Kleiman,et al.  The contribution of the primer activation signal to differences between Gag- and NCp7-facilitated tRNA(Lys3) annealing in HIV-1. , 2009, Virology.

[6]  B. Berkhout,et al.  HIV-1 reverse transcription initiation: a potential target for novel antivirals? , 2008, Virus research.

[7]  J. Darlix,et al.  Nucleocapsid mutations turn HIV-1 into a DNA-containing virus , 2008, Nucleic acids research.

[8]  C. Tisné,et al.  New insights into the formation of HIV-1 reverse transcription initiation complex. , 2007, Biochimie.

[9]  H. Huthoff,et al.  The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation , 2007, Nucleic acids research.

[10]  K. Musier-Forsyth,et al.  Rapid kinetics of protein-nucleic acid interaction is a major component of HIV-1 nucleocapsid protein's nucleic acid chaperone function. , 2006, Journal of molecular biology.

[11]  R. Gorelick,et al.  Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins , 2006, Nucleic acids research.

[12]  Michael Zuker,et al.  DINAMelt web server for nucleic acid melting prediction , 2005, Nucleic Acids Res..

[13]  C. Tisné Structural bases of the annealing of primer tRNA(3Lys) to the HIV-1 viral RNA. , 2005, Current HIV research.

[14]  B. Berkhout,et al.  Forced Selection of a Human Immunodeficiency Virus Type 1 Variant That Uses a Non-Self tRNA Primer for Reverse Transcription: Involvement of Viral RNA Sequences and the Reverse Transcriptase Enzyme , 2004, Journal of Virology.

[15]  C. Ehresmann,et al.  Structural Variability of the Initiation Complex of HIV-1 Reverse Transcription* , 2004, Journal of Biological Chemistry.

[16]  B. Roques,et al.  Role of the structure of the top half of HIV-1 cTAR DNA on the nucleic acid destabilizing activity of the nucleocapsid protein NCp7. , 2004, Journal of molecular biology.

[17]  Karin Musier-Forsyth,et al.  Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. , 2004, Journal of molecular biology.

[18]  Ben Berkhout,et al.  Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition , 2004, Journal of Virology.

[19]  B. Roques,et al.  The Annealing Mechanism of HIV-1 Reverse Transcription Primer onto the Viral Genome* , 2004, Journal of Biological Chemistry.

[20]  S. Harvey,et al.  Probing the Importance of tRNA Anticodon: Human Immunodeficiency Virus Type 1 (HIV-1) RNA Genome Complementarity with an HIV-1 That Selects tRNAGlu for Replication , 2003, Journal of Virology.

[21]  A. E. Rosen,et al.  Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. , 2003, The Journal of biological chemistry.

[22]  B. Roques,et al.  Destabilization of the HIV-1 complementary sequence of TAR by the nucleocapsid protein through activation of conformational fluctuations. , 2003, Journal of molecular biology.

[23]  C. Ehresmann,et al.  Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? , 2003, Nucleic acids research.

[24]  B. Berkhout,et al.  The tRNA Primer Activation Signal in the Human Immunodeficiency Virus Type 1 Genome Is Important for Initiation and Processive Elongation of Reverse Transcription , 2002, Journal of Virology.

[25]  B. Berkhout,et al.  Switching the in vitro tRNA usage of HIV-1 by simultaneous adaptation of the PBS and PAS. , 2002, RNA.

[26]  B. Berkhout,et al.  Initiation of HIV-1 Reverse Transcription Is Regulated by a Primer Activation Signal* , 2001, The Journal of Biological Chemistry.

[27]  S. L. Le Grice,et al.  A Novel Interaction of tRNALys,3 with the Feline Immunodeficiency Virus RNA Genome Governs Initiation of Minus Strand DNA Synthesis* , 2001, The Journal of Biological Chemistry.

[28]  Frédéric Freund,et al.  Initiation of HIV-2 reverse transcription: a secondary structure model of the RNA?tRNALys3 duplex , 2001, Nucleic Acids Res..

[29]  K. Musier-Forsyth,et al.  Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Roques,et al.  Heteronuclear NMR studies of the interaction of tRNA3Lys with HIV-1 nucleocapsid protein , 2001 .

[31]  Shan Cen,et al.  Roles of Pr55gag and NCp7 in tRNA3Lys Genomic Placement and the Initiation Step of Reverse Transcription in Human Immunodeficiency Virus Type 1 , 2000, Journal of Virology.

[32]  C. Ehresmann,et al.  NMR and biochemical characterization of recombinant human tRNA(Lys)3 expressed in Escherichia coli: identification of posttranscriptional nucleotide modifications required for efficient initiation of HIV-1 reverse transcription. , 2000, RNA.

[33]  C. Morrow,et al.  Identification of a human immunodeficiency virus type 1 that stably uses tRNALys1,2 rather than tRNALys,3 for initiation of reverse transcription. , 1999, Virology.

[34]  E. Westhof,et al.  Structural basis for the specificity of the initiation of HIV‐1 reverse transcription , 1999, The EMBO journal.

[35]  J. Weigelt Single Scan, Sensitivity- and Gradient-Enhanced TROSY for Multidimensional NMR Experiments , 1998 .

[36]  A. Rein,et al.  Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. , 1998, Trends in biochemical sciences.

[37]  N. Tjandra,et al.  Dynamical behavior of the HIV-1 nucleocapsid protein. , 1998, Journal of molecular biology.

[38]  C. Ehresmann,et al.  Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. , 1998, Nucleic acids research.

[39]  P. Borer,et al.  Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. , 1998, Science.

[40]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Mak,et al.  Primer tRNAs for reverse transcription , 1997, Journal of virology.

[42]  M. Wainberg,et al.  The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity , 1997, Journal of virology.

[43]  C. Morrow,et al.  Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met) , 1997, Journal of virology.

[44]  S. Hajduk,et al.  Nucleotide sequences within the U5 region of the viral RNA genome are the major determinants for an human immunodeficiency virus type 1 to maintain a primer binding site complementary to tRNA(His). , 1996, Virology.

[45]  J. Wakefield,et al.  Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His) , 1996, Journal of virology.

[46]  J. Wakefield,et al.  Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys) , 1995, Journal of virology.

[47]  C. Ehresmann,et al.  Initiation of Reverse Transcripion of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA|rlmbopopnbop|Lys|clobop|3 (Template/Primer) Complex , 1995 .

[48]  M. Wainberg,et al.  Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication , 1994, Journal of virology.

[49]  C. Ehresmann,et al.  Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. , 1993, The Journal of biological chemistry.

[50]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[51]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[52]  H. Kung,et al.  Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription , 1992, Journal of virology.

[53]  F. Barré-Sinoussi,et al.  HIV‐1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. , 1989, The EMBO journal.

[54]  B. Berkhout,et al.  HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. , 2007, Advances in pharmacology.

[55]  K. Musier-Forsyth,et al.  Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. , 2005, Progress in nucleic acid research and molecular biology.

[56]  M Rau,et al.  Nucleocapsid protein of human immunodeficiency virus as a model protein with chaperoning functions and as a target for antiviral drugs. , 2000, Advances in pharmacology.

[57]  M. Wainberg,et al.  Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1. , 2000, Journal of virology.

[58]  B. Berkhout Structure and function of the human immunodeficiency virus leader RNA. , 1996, Progress in nucleic acid research and molecular biology.

[59]  C. Ehresmann,et al.  Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). , 1995, Journal of molecular biology.

[60]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.