Performance Evaluation Methodology for Long-Term Visual Object Tracking

A long-term visual object tracking performance evaluation methodology and a benchmark are proposed. Performance measures are designed by following a long-term tracking definition to maximize the analysis probing strength. The new measures outperform existing ones in interpretation potential and in better distinguishing between different tracking behaviors. We show that these measures generalize the short-term performance measures, thus linking the two tracking problems. Furthermore, the new measures are highly robust to temporal annotation sparsity and allow annotation of sequences hundreds of times longer than in the current datasets without increasing manual annotation labor. A new challenging dataset of carefully selected sequences with many target disappearances is proposed. A new tracking taxonomy is proposed to position trackers on the short-term/long-term spectrum. The benchmark contains an extensive evaluation of the largest number of long-term tackers and comparison to state-of-the-art short-term trackers. We analyze the influence of tracking architecture implementations to long-term performance and explore various re-detection strategies as well as influence of visual model update strategies to long-term tracking drift. The methodology is integrated in the VOT toolkit to automate experimental analysis and benchmarking and to facilitate future development of long-term trackers.

[1]  Ramakant Nevatia,et al.  Tracking of Multiple, Partially Occluded Humans based on Static Body Part Detection , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[3]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ales Leonardis,et al.  Beyond Standard Benchmarks: Parameterizing Performance Evaluation in Visual Object Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[6]  Jiri Matas,et al.  FuCoLoT - A Fully-Correlational Long-Term Tracker , 2018, ACCV.

[7]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[9]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[10]  Roman P. Pflugfelder,et al.  Clustering of static-adaptive correspondences for deformable object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Bernard Ghanem,et al.  TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild , 2018, ECCV.

[12]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[13]  Arnold W. M. Smeulders,et al.  UvA-DARE (Digital Academic Repository) Siamese Instance Search for Tracking , 2016 .

[14]  Simon Lucey,et al.  Need for Speed: A Benchmark for Higher Frame Rate Object Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[15]  Jiri Matas,et al.  FCLT - A Fully-Correlational Long-Term Tracker , 2017, ArXiv.

[16]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[18]  Rainer Stiefelhagen,et al.  The CLEAR 2006 Evaluation , 2006, CLEAR.

[19]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Haibin Ling,et al.  Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[21]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[22]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[23]  Jiri Matas,et al.  Online adaptive hidden Markov model for multi-tracker fusion , 2015, Comput. Vis. Image Underst..

[24]  Arnold W. M. Smeulders,et al.  Tracking for Half an Hour , 2017, ArXiv.

[25]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[26]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Vineet Gandhi,et al.  Long-Term Visual Object Tracking Benchmark , 2017, ACCV.

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[29]  Arnold W. M. Smeulders,et al.  Long-term Tracking in the Wild: A Benchmark , 2018, ECCV.

[30]  Jiri Matas,et al.  Now you see me: evaluating performance in long-term visual tracking , 2018, ArXiv.

[31]  Alberto Del Bimbo,et al.  Object Tracking by Oversampling Local Features , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[34]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Rynson W. H. Lau,et al.  CREST: Convolutional Residual Learning for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[36]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[39]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Xin Zhao,et al.  GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[42]  Stefan Roth,et al.  MOT16: A Benchmark for Multi-Object Tracking , 2016, ArXiv.

[43]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).