Fitting Pulsar Wind Tori

Chandra X-Ray Observatory imaging has shown that equatorial tori, often with polar jets, are very common in young pulsar wind nebulae (PWNe). These structures are interesting both for what they reveal about the relativistic wind itself and for the (nearly) model-independent measurement of the neutron star spin orientation they provide. The latter is a particularly valuable probe of pulsar emission models and neutron star physics. We describe here a procedure for fitting simple three-dimensional torus models to the X-ray data, which provides robust estimates of the geometric parameters. An application to six PWN tori gives orientations, PWN shock scales, and postshock wind speeds, along with statistical errors. We illustrate the use of these data by commenting on the implications for kick physics and high-energy beaming models.

[1]  S. Komissarov,et al.  The origin of peculiar jet-torus structure in the Crab nebula , 2003 .

[2]  A. Lyne,et al.  The Proper Motion, Age, and Initial Spin Period of PSR J0538+2817 in S147 , 2003, astro-ph/0306628.

[3]  W. Goss,et al.  Pulsar PSR B0656+14, the Monogem Ring, and the Origin of the “Knee” in the Primary Cosmic-Ray Spectrum , 2003, astro-ph/0306462.

[4]  U. California,et al.  The Distance and Radius of the Neutron Star PSR B0656+14 , 2003, astro-ph/0306232.

[5]  O. Kargaltsev,et al.  The Variable Jet of the Vela Pulsar , 2003, astro-ph/0305510.

[6]  P. McCulloch,et al.  The Vela Pulsar’s Proper Motion and Parallax Derived from VLBI Observations , 2003, astro-ph/0302374.

[7]  R. Romani,et al.  The Pulsar Wind Nebula Torus of PSR J0538+2817 and the Origin of Pulsar Velocities , 2003, astro-ph/0301506.

[8]  E. D. Swaluw,et al.  Interaction of high-velocity pulsars with supernova remnant shells , 2002, astro-ph/0202232.

[9]  Koji Mori,et al.  Hubble Space Telescope and Chandra Monitoring of the Crab Synchrotron Nebula , 2002 .

[10]  D. Bock,et al.  PSR B 1706-44 and the SNR G 343.1-2.3 as the remnants of a cavity supernova explosion , 2002, astro-ph/0208105.

[11]  B. Stappers,et al.  Proper-Motion Measurements of Pulsar B1951+32 in the Supernova Remnant CTB 80 , 2002, astro-ph/0202063.

[12]  R. Dodson,et al.  On the Association of G343.1-2.3 and PSR 1706-44 , 2001, astro-ph/0111354.

[13]  D. Helfand,et al.  Vela Pulsar and Its Synchrotron Nebula , 2000, astro-ph/0007310.

[14]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[15]  O'Dell,et al.  Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula , 2000, The Astrophysical journal.

[16]  E. Phinney,et al.  Birth kicks as the origin of pulsar rotation , 1998, Nature.

[17]  R. Romani,et al.  $\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries, A Computer Animation , 1994, astro-ph/9406021.

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Laurence E. Peterson,et al.  A scanning modulation collimator observation of the high-energy X-ray source in the Crab Nebula , 1987 .

[20]  G. Downs,et al.  Intensity dependence of the pulse profile and polarization of the Vela pulsar , 1983 .