Glacier ice archives nearly 15,000-year-old microbes and phages

[1]  Jiarong Guo,et al.  Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation , 2021, PeerJ.

[2]  N. Kyrpides,et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes , 2020, Nature Biotechnology.

[3]  G. Barker,et al.  Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems , 2020, Nature Communications.

[4]  M. Sullivan,et al.  The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut , 2020, Cell Host & Microbe.

[5]  M. Sullivan,et al.  DRAM for distilling microbial metabolism to automate the curation of microbiome function , 2020, bioRxiv.

[6]  M. Sullivan,et al.  Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice , 2020, mSystems.

[7]  Karthik Anantharaman,et al.  VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences , 2020, Microbiome.

[8]  W. Jang,et al.  Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil. , 2020, International journal of systematic and evolutionary microbiology.

[9]  J. V. Van Etten,et al.  Chloroviruses , 2019, Viruses.

[10]  Maureen L. Coleman,et al.  Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems , 2019, Nature Reviews Microbiology.

[11]  E. Koonin,et al.  Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids , 2019, Nature Communications.

[12]  R. Malmstrom,et al.  Probing the active fraction of soil microbiomes using BONCAT-FACS , 2019, Nature Communications.

[13]  Evelien M. Adriaenssens,et al.  Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks , 2019, Nature Biotechnology.

[14]  G. Cochrane,et al.  Marine DNA Viral Macro- and Microdiversity from Pole to Pole , 2019, Cell.

[15]  Matthew B. Sullivan,et al.  Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands , 2019 .

[16]  R. Malmstrom,et al.  Optimizing de novo genome assembly from PCR-amplified metagenomes , 2018, PeerJ.

[17]  T. Yao,et al.  Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau , 2018, Journal of Glaciology.

[18]  Natalia N. Ivanova,et al.  Minimum Information about an Uncultivated Virus Genome (MIUViG) , 2018, Nature Biotechnology.

[19]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[20]  Changsheng Li,et al.  Host-linked soil viral ecology along a permafrost thaw gradient , 2018, Nature Microbiology.

[21]  S. Saleska,et al.  Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing , 2018, mSystems.

[22]  Ji‐Zheng He,et al.  Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud volcanic soil in Xinjiang, China , 2018, Journal of Soils and Sediments.

[23]  E. Mosley‐Thompson,et al.  Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms , 2018, Front. Microbiol..

[24]  E. Mosley‐Thompson,et al.  Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains , 2018 .

[25]  J. McConnell,et al.  Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene , 2018, Global change biology.

[26]  M. Shi,et al.  The evolutionary history of vertebrate RNA viruses , 2018, Nature.

[27]  L. Thompson,et al.  Atmospheric depositions of natural and anthropogenic trace elements on the Guliya ice cap (northwestern Tibetan Plateau) during the last 340 years , 2018 .

[28]  Mya Breitbart,et al.  Diversity of DNA and RNA Viruses in Indoor Air As Assessed via Metagenomic Sequencing. , 2018, Environmental science & technology.

[29]  M. Sullivan,et al.  Dietary energy drives the dynamic response of bovine rumen viral communities , 2017, Microbiome.

[30]  M. Brockhurst,et al.  Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Emiley A. Eloe-Fadrosh,et al.  Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity , 2017, PeerJ.

[32]  T. Hamilton,et al.  Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. , 2017, Environmental microbiology.

[33]  A. Edwards,et al.  Microbial Life in Supraglacial Environments , 2017 .

[34]  S. Rassner Viruses in Glacial Environments , 2017 .

[35]  T. Yao,et al.  Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau , 2017, FEMS microbiology ecology.

[36]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[37]  A. Anesio,et al.  Microbially driven export of labile organic carbon from the Greenland ice sheet , 2017 .

[38]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[39]  S. Abedon,et al.  Lysogeny in nature: mechanisms, impact and ecology of temperate phages , 2017, The ISME Journal.

[40]  Ji‐Zheng He,et al.  Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China , 2017, Journal of Soils and Sediments.

[41]  U. Hesse,et al.  Virome Assembly and Annotation: A Surprise in the Namib Desert , 2017, Front. Microbiol..

[42]  Jie Ren,et al.  Alignment-free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document} oligonucleotide frequency dissi , 2016, Nucleic acids research.

[43]  Sergey Dobretsov,et al.  Evaluating the Reliability of Counting Bacteria Using Epifluorescence Microscopy , 2017 .

[44]  Dawn B. Goldsmith,et al.  Towards quantitative viromics for both double-stranded and single-stranded DNA viruses , 2016, PeerJ.

[45]  Edward C. Holmes,et al.  Redefining the invertebrate RNA virosphere , 2016, Nature.

[46]  S. Xiang,et al.  Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China , 2016, Front. Microbiol..

[47]  R. Stocker,et al.  Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics , 2016, PeerJ.

[48]  Peer Bork,et al.  Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses , 2016, Nature.

[49]  D. Cowan,et al.  Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. , 2016, Environmental microbiology.

[50]  Ken Youens-Clark,et al.  iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure , 2016, The ISME Journal.

[51]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[52]  M. Touchon,et al.  Genetic and life-history traits associated with the distribution of prophages in bacteria , 2016, The ISME Journal.

[53]  J. McGrath,et al.  Metagenomic Characterisation of the Viral Community of Lough Neagh, the Largest Freshwater Lake in Ireland , 2016, PloS one.

[54]  H. Fischer,et al.  Geochemical and Microbiological Studies of Nitrous Oxide Variations within the New NEEM Greenland Ice Core during the Last Glacial Period , 2016 .

[55]  R. Ismagilov,et al.  High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates , 2016, Applied and Environmental Microbiology.

[56]  Evelien M. Adriaenssens,et al.  Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses , 2016, Viruses.

[57]  Bas E. Dutilh,et al.  Computational approaches to predict bacteriophage–host relationships , 2015, FEMS microbiology reviews.

[58]  Alexandre M. Anesio,et al.  Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions , 2015, Front. Microbiol..

[59]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[60]  P. Bork,et al.  Patterns and ecological drivers of ocean viral communities , 2015, Science.

[61]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[62]  M. Sullivan,et al.  An Inexpensive, Accurate, and Precise Wet-Mount Method for Enumerating Aquatic Viruses , 2015, Applied and Environmental Microbiology.

[63]  Matthew B. Sullivan,et al.  Rising to the challenge: accelerated pace of discovery transforms marine virology , 2015, Nature Reviews Microbiology.

[64]  Evelien M. Adriaenssens,et al.  Metagenomic analysis of the viral community in Namib Desert hypoliths. , 2015, Environmental microbiology.

[65]  A. Sebastian,et al.  Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core , 2015 .

[66]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[67]  M. Clokie,et al.  Temperature dependent bacteriophages of a tropical bacterial pathogen , 2014, Front. Microbiol..

[68]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[69]  T. Ng,et al.  Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch , 2014, Proceedings of the National Academy of Sciences.

[70]  V. Miteva,et al.  Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core. , 2014, FEMS microbiology ecology.

[71]  P. Hugenholtz,et al.  Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters , 2014, The ISME Journal.

[72]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[73]  J. Claverie,et al.  Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology , 2014, Proceedings of the National Academy of Sciences.

[74]  A. Anesio,et al.  Viral impacts on bacterial communities in Arctic cryoconite , 2013 .

[75]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[76]  S. Hallam,et al.  Sequencing platform and library preparation choices impact viral metagenomes , 2013, BMC Genomics.

[77]  B. Hurwitz,et al.  Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics , 2013, Environmental microbiology.

[78]  G. Avguštin,et al.  Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov , 2013, Antonie van Leeuwenhoek.

[79]  Ram Veerapaneni,et al.  Microbial Analyses of Ancient Ice Core Sections from Greenland and Antarctica , 2013, Biology.

[80]  M. Stibal,et al.  Biological processes on glacier and ice sheet surfaces , 2012 .

[81]  Joshua S. Weitz,et al.  Ocean viruses and their effects on microbial communities and biogeochemical cycles , 2012, F1000 biology reports.

[82]  B. Poulos,et al.  Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method , 2012, Environmental microbiology.

[83]  Kim Sneppen,et al.  Coexistence of phage and bacteria on the boundary of self-organized refuges , 2012, Proceedings of the National Academy of Sciences.

[84]  T. W. Whon,et al.  Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere , 2012, Journal of Virology.

[85]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[86]  D. Debroas,et al.  Assessing the Diversity and Specificity of Two Freshwater Viral Communities through Metagenomics , 2012, PloS one.

[87]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[88]  F. Schinner,et al.  Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. , 2011, International journal of systematic and evolutionary microbiology.

[89]  B. Haas,et al.  Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. , 2011, Genome research.

[90]  S. Short,et al.  Novel phycodnavirus genes amplified from Canadian freshwater environments , 2011 .

[91]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[92]  S. Kohshima,et al.  Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis , 2010 .

[93]  L. An,et al.  Differences in community composition of bacteria in four glaciers in western China , 2010 .

[94]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[95]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[96]  T. Yao,et al.  Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. , 2009, FEMS microbiology ecology.

[97]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[98]  V. Miteva,et al.  Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. , 2009, International journal of systematic and evolutionary microbiology.

[99]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[100]  V. Miteva,et al.  Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. , 2009, Environmental microbiology.

[101]  T. Yao,et al.  Bacterial diversity in the snow over Tibetan Plateau Glaciers , 2009, Extremophiles.

[102]  T. Yao,et al.  Bacteria variabilities in a Tibetan ice core and their relations with climate change , 2008 .

[103]  Gipsi Lima-Mendez,et al.  Reticulate representation of evolutionary and functional relationships between phage genomes. , 2008, Molecular biology and evolution.

[104]  R. Sandaa,et al.  Phylogenetic Analysis of Members of the Phycodnaviridae Virus Family, Using Amplified Fragments of the Major Capsid Protein Gene , 2008, Applied and Environmental Microbiology.

[105]  J. Dushoff,et al.  Alternative stable states in host–phage dynamics , 2008, Theoretical Ecology.

[106]  A. Anesio,et al.  Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard) , 2007 .

[107]  C. Clark,et al.  A glacier respires: Quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem , 2007 .

[108]  P. Price,et al.  Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals , 2007, Proceedings of the National Academy of Sciences.

[109]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[110]  Florent E. Angly,et al.  The Marine Viromes of Four Oceanic Regions , 2006, PLoS biology.

[111]  R. Harshey,et al.  A mechanical role for the chemotaxis system in swarming motility , 2006, Molecular microbiology.

[112]  James H. Brown,et al.  Microbial biogeography: putting microorganisms on the map , 2006, Nature Reviews Microbiology.

[113]  P. Price,et al.  Microbial origin of excess methane in glacial ice and implications for life on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[114]  V. Miteva,et al.  Detection and Isolation of Ultrasmall Microorganisms from a 120,000-Year-Old Greenland Glacier Ice Core , 2005, Applied and Environmental Microbiology.

[115]  Brent C. Christner,et al.  Glacial ice cores: A model system for developing extraterrestrial decontamination protocols , 2005 .

[116]  L. Mcdaniel,et al.  Effect of Nutrient Addition and Environmental Factors on Prophage Induction in Natural Populations of Marine Synechococcus Species , 2005, Applied and Environmental Microbiology.

[117]  S. Rogers,et al.  Comparisons of Protocols for Decontamination of Environmental Ice Samples for Biological and Molecular Examinations , 2004, Applied and Environmental Microbiology.

[118]  J. Priscu,et al.  The Occurrence of Lysogenic Bacteria and Microbial Aggregates in the Lakes of the McMurdo Dry Valleys, Antarctica , 2004, Microbial Ecology.

[119]  E. Willerslev,et al.  Isolation of nucleic acids and cultures from fossil ice and permafrost. , 2004, Trends in ecology & evolution.

[120]  P. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[121]  D. Blair Flagellar movement driven by proton translocation , 2003, FEBS letters.

[122]  E. Mosley‐Thompson,et al.  Bacterial recovery from ancient glacial ice. , 2003, Environmental microbiology.

[123]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[124]  E. Mosley‐Thompson,et al.  Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. , 2001, Environmental microbiology.

[125]  L. Pedersen,et al.  Structure and function of sulfotransferases. , 2001, Archives of biochemistry and biophysics.

[126]  E. Mosley‐Thompson,et al.  Recovery and Identification of Viable Bacteria Immured in Glacial Ice , 2000 .

[127]  K. Wommack,et al.  Virioplankton: Viruses in Aquatic Ecosystems , 2000, Microbiology and Molecular Biology Reviews.

[128]  D. Karl,et al.  Microorganisms in the accreted ice of Lake Vostok, Antarctica. , 1999, Science.

[129]  C. McKay,et al.  Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. , 1999, Science.

[130]  G. Bachand,et al.  Detection of tomato mosaic tobamovirus RNA in ancient glacial ice , 1999, Polar Biology.

[131]  T. Reid,et al.  Direct detection of Histoplasma capsulatum in soil suspensions by two-stage PCR. , 1999, Molecular and cellular probes.

[132]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[133]  J. Paul,et al.  Seasonal Abundance of Lysogenic Bacteria in a Subtropical Estuary , 1998, Applied and Environmental Microbiology.

[134]  J. Fuhrman,et al.  Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria , 1998 .

[135]  R. Koebnik,et al.  Proposal for a peptidoglycan‐associating alpha‐helical motif in the C‐terminal regions of some bacterial cell‐surface proteins , 1995, Molecular microbiology.

[136]  R. Macnab,et al.  Co-overproduction and localization of the Escherichia coli motility proteins motA and motB , 1990, Journal of bacteriology.

[137]  G. Gloor,et al.  The bacteriophage Mu N gene encodes the 64-kDa virion protein which is injected with, and circularizes, infecting Mu DNA. , 1986, The Journal of biological chemistry.

[138]  R. Harshey,et al.  Infecting bacteriophage mu DNA forms a circular DNA-protein complex. , 1983, Journal of molecular biology.

[139]  J. Reeve,et al.  Bacteriophage Mu DNA circularizes following infection of Escherichia coli. , 1983, The EMBO journal.

[140]  D. Cohen Optimizing reproduction in a randomly varying environment. , 1966, Journal of theoretical biology.

[141]  A. McLean Bacteria of Ice and Snow in Antarctica , 1918, Nature.

[142]  R. Margesin Psychrophiles: From Biodiversity to Biotechnology , 2017, Springer International Publishing.

[143]  Pamela Alejandra Santibanez-Avila Factors influecing the abundance of microorganisms in icy environments , 2016 .

[144]  P. Holmlund,et al.  Historically unprecedented global glacier decline in the early 21st century , 2015 .

[145]  M. Sullivan,et al.  Preparation of metagenomic libraries from naturally occurring marine viruses. , 2013, Methods in enzymology.

[146]  Ram Veerapaneni Analysis and Characterization of Microbes from Ancient Glacial Ice , 2009 .

[147]  V. Miteva,et al.  Bacteria in Snow and Glacier Ice , 2008 .

[148]  Scott A. Elias,et al.  Encyclopedia of quaternary science , 2007 .

[149]  L. Thompson,et al.  An Andean ice-core record of a Middle Holocene mega-drought in North Africa and Asia , 2006, Annals of Glaciology.

[150]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[151]  B. Christner Detection, recovery, isolation and characterization of bacteria in glacial ice and Lake Vostok accretion ice / , 2002 .

[152]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[153]  Irina N Mitskevich,et al.  Microflora of the deep glacier horizons of Central Antarctica , 1998 .

[154]  E. Mosley‐Thompson,et al.  A 1000 year climate ice-core record from the Guliya ice cap, China: its relationship to global climate variability , 1995, Annals of Glaciology.