On assignability of Lyapunov spectrum of discrete linear time-varying system with control

In this paper we study discrete linear time-varying system with control and bounded coefficients. For such systems we consider problems of the proportional global assignability and proportional local assignability of the Lyapunov spectrum of the discrete linear time-varying system with control. This is a generalization of the pole placement theorem, which is well-known in the theory of time-invariant system. The main results present sufficient conditions for considered types of assignability.

[1]  Jerzy Klamka,et al.  Trajectory controllability of semilinear systems with multiple variable delays in control , 2014 .

[2]  Beata Sikora,et al.  Controllability of time-delay fractional systems with and without constraints , 2016 .

[3]  Jerzy Klamka,et al.  Stability and controllability of switched systems , 2013 .

[4]  W. Wonham,et al.  On pole assignment in multi-input controllable linear systems , 1967, IEEE Transactions on Automatic Control.

[5]  A. Czornik,et al.  Corrigendum Lyapunov exponents for systems with unbounded coefficients , 2013 .

[6]  A. Świerniak,et al.  On Controllability of Discrete Time Jump Linear System , 2000 .

[7]  Jerzy Klamka,et al.  Controllability of discrete linear time-varying fractional system with constant delay , 2016 .

[8]  Yasuhiko Mutoh,et al.  A new design method for pole placement of linear time-varying discrete multivariable systems , 2011, Proceedings of the 30th Chinese Control Conference.

[9]  J. Klamka Controllability of dynamical systems , 1991, Mathematica Applicanda.

[10]  Adam Czornik,et al.  On controllability with respect to the expectation of discrete time jump linear systems , 2001, J. Frankl. Inst..

[11]  A. Czornik,et al.  Lyapunov exponents for systems with unbounded coefficients , 2013 .

[12]  Artur Babiarz,et al.  Output controllability of the discrete-time linear switched systems , 2016 .

[13]  Adam Czornik,et al.  Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system , 2008, Autom..

[14]  M. Kono Eigenvalue assignment in linear periodic discrete-time systems† , 1980 .

[15]  S. N. Popova,et al.  On the global controllability of lyapunov exponents of linear systems , 2007 .

[16]  Svetlana Popova,et al.  On the spectral set of a linear discrete system with stable Lyapunov exponents , 2016 .

[17]  S. N. Popova,et al.  Sufficient Conditions for the Local Proportional Controllability of Lyapunov Exponents of Linear Systems , 2003 .

[18]  V. Ionescu,et al.  Time-Varying Discrete Linear Systems: Input-Output Operators. Riccati Equations. Disturbance Attenuation , 1994 .

[19]  S. N. Popova Simultaneous Local Controllability of the Spectrum and the Lyapunov Irregularity Coefficient of Regular Systems , 2004 .

[20]  A. Czornik,et al.  On the spectrum of discrete time-varying linear systems , 2013 .

[21]  Brian D. O. Anderson,et al.  Stabilizability of linear time-varying systems , 2013, Syst. Control. Lett..

[22]  Aleksander Nawrat,et al.  On the stability of Lyapunov exponents of discrete linear systems , 2013, 2013 European Control Conference (ECC).

[23]  Jerzy Klamka,et al.  Controllability of the fractional discrete linear time-varying infinite-dimensional systems , 2016 .

[24]  Jerzy Klamka,et al.  Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[25]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[26]  A. Czornik,et al.  On the Lyapunov exponents of a class of second-order discrete time linear systems with bounded perturbations , 2013 .

[27]  Jerzy Klamka,et al.  Controllability of switched infinite-dimensional linear dynamical systems , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[28]  Jerzy Klamka,et al.  Controllability of switched linear dynamical systems , 2013, 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR).

[29]  Aleksander Nawrat,et al.  On new estimates for Lyapunov exponents of discrete time varying linear systems , 2010, Autom..

[30]  Charles C. Nguyen,et al.  Arbitrary eigenvalue assignments for linear time-varying multivariable control systems , 1987 .

[31]  Beata Sikora,et al.  On the constrained controllability of dynamical systems with multiple delays in the state , 2003 .

[32]  C. Langenhop On the stabilization of linear systems , 1964 .

[33]  Adam Czornik,et al.  On direct controllability of discrete time jump linear system , 2004, J. Frankl. Inst..

[34]  Masao Ikeda,et al.  Estimation and Feedback in Linear Time-Varying Systems: A Deterministic Theory , 1975 .