Resistive Switchings in Transition‐Metal Oxides

Promising candidates for the next-generation memory devices have emerged one after another for the last decade. Ferroelectric random access memories (FeRAM), magnetoresistive random access memories (MRAM), phase change memories (PCM) are indeed at the dawn of the international development races. Along with those three fascinating memories, we focus here on probably the most seminal candidate of the future device — resistive random access memory (RRAM® or ReRAM). ReRAM consists of a simple metal/oxide/metal sandwich structure as shown schematically in Fig. 1 with myriad combinations of the metals and oxides. The sandwich shows reversible and non-volatile changes of the electric resistance by applications of ordinary electric pulses (see the right panel of Fig. 1). This phenomenon is called “resistance change” or “resistive switching”. Because of the

[1]  M. Blamire,et al.  Functional metal oxides : new science and novel applications , 2013 .

[2]  Thomas Mikolajick,et al.  Metal oxide memories based on thermochemical and valence change mechanisms , 2012 .

[3]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[4]  Hyunsang Hwang,et al.  Materials and process aspect of cross-point RRAM (invited) , 2011 .

[5]  R. Waser,et al.  Thermochemical resistive switching: materials, mechanisms, and scaling projections , 2011 .

[6]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[7]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[8]  L. Goux,et al.  Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells , 2010 .

[9]  Jia-Woei Wu,et al.  Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer , 2010, Nanotechnology.

[10]  R. Dittmann,et al.  Reversible alternation between bipolar and unipolar resistive switching in polycrystalline barium strontium titanate thin films , 2010 .

[11]  Cheol Seong Hwang,et al.  Identification of the controlling parameter for the set-state resistance of a TiO2 resistive switching cell , 2010 .

[12]  A. Sawa,et al.  Relationship between resistive switching characteristics and band diagrams of Ti / Pr 1 − x Ca x MnO 3 junctions , 2009 .

[13]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[14]  C. Hwang,et al.  The conical shape filament growth model in unipolar resistance switching of TiO2 thin film , 2009 .

[15]  D. Ielmini,et al.  Resistance transition in metal oxides induced by electronic threshold switching , 2009 .

[16]  J. S. Lee,et al.  Occurrence of both unipolar memory and threshold resistance switching in a NiO film. , 2008, Physical review letters.

[17]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[18]  M. Rozenberg,et al.  Taming the Mott Transition for a Novel Mott Transistor , 2008 .

[19]  Daniel Braithwaite,et al.  Electric‐Pulse‐driven Electronic Phase Separation, Insulator–Metal Transition, and Possible Superconductivity in a Mott Insulator , 2008, Advanced materials.

[20]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[21]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[22]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[23]  M. Gomi,et al.  Origin of Negative Differential Resistance Observed on Bipolar Resistance Switching Device with Ti/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[24]  H. Akinaga,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[25]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[26]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[27]  H. Akinaga,et al.  Resistance switching in the metal deficient-type oxides: NiO and CoO , 2007 .

[28]  Heng-Yuan Lee,et al.  Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide , 2007 .

[29]  Masashi Kawasaki,et al.  Resistance switching memory device with a nanoscale confined current path , 2007 .

[30]  S. Hsu,et al.  Resistance random access memory switching mechanism , 2007 .

[31]  K. Kinoshita,et al.  Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model , 2007 .

[32]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[33]  Doo Seok Jeong,et al.  Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view , 2006 .

[34]  Y. Inoue,et al.  High Speed Unipolar Switching Resistance RAM (RRAM) Technology , 2006, 2006 International Electron Devices Meeting.

[35]  Jin-Ha Hwang,et al.  Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition , 2006 .

[36]  Rainer Waser,et al.  Impedance spectroscopy of TiO2 thin films showing resistive switching , 2006 .

[37]  Byung Joon Choi,et al.  Resistive Switching in Pt ∕ Al2O3 ∕ TiO2 ∕ Ru Stacked Structures , 2006 .

[38]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[39]  N. Nagaosa,et al.  Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. , 2005, Physical review letters.

[40]  Masashi Kawasaki,et al.  Interface transport properties and resistance switching in perovskite-oxide heterojunctions , 2005, SPIE Optics + Photonics.

[41]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[42]  René A. J. Janssen,et al.  Electrically Rewritable Memory Cells from Poly(3‐hexylthiophene) Schottky Diodes , 2005 .

[43]  Alexander M. Grishin,et al.  Giant resistance switching in metal-insulator-manganite junctions : Evidence for Mott transition , 2005 .

[44]  H. Akinaga,et al.  Strong electron correlation effects in non-volatile electronic memory devices , 2004, Symposium Non-Volatile Memory Technology 2005..

[45]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[46]  Hideaki Adachi,et al.  Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature , 2004 .

[47]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[48]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[49]  R. D. Gould,et al.  Monte Carlo simulation of current–voltage characteristics in metal–insulator–metal thin film structures , 2003 .

[50]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[51]  R E Thurstans,et al.  The electroformed metal-insulator-metal structure: a comprehensive model , 2002 .

[52]  N. Tulina,et al.  Reversible electrical switching at the Bi2Sr2CaCu2O8+y surface in the normal metal – Bi2Sr2CaCu2O8+y single crystal heterojunction , 2001 .

[53]  Field-induced anomalous changes in Cr/a-Si:H/V thin film structures , 2001 .

[54]  Eckehard Schöll,et al.  Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors , 2001 .

[55]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[56]  T. W. Hickmott Voltage-dependent dielectric breakdown and voltage-controlled negative resistance in anodized Al–Al2O3–Au diodes , 2000 .

[57]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[58]  E. Pippel,et al.  Evidence of oxygen segregation at Ag/MgO interfaces , 2000 .

[59]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[60]  K. Shum,et al.  Demonstration of III–V semiconductor-based nonvolatile memory devices , 2000 .

[61]  P. Avouris,et al.  Current-induced nanochemistry: Local oxidation of thin metal films , 1999 .

[62]  Light-emissive nonvolatile memory effects in porous silicon diodes , 1999 .

[63]  Phaedon Avouris,et al.  Current-induced local oxidation of metal films: Mechanism and quantum-size effects , 1998 .

[64]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[65]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[66]  Peng,et al.  Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. , 1995, Physical review. B, Condensed matter.

[67]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[68]  R. Symanczyk,et al.  Experimental observation of spatial structures due to current filament formation in silicon pin diodes , 1986 .

[69]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[70]  F. Modine,et al.  Electrolytic Coloration and Electrical Breakdown of MgO Single Crystals , 1984 .

[71]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[72]  D. P. Oxley,et al.  ELECTROFORMING, SWITCHING AND MEMORY EFFECTS IN OXIDE THIN FILMS , 1977 .

[73]  H. Biederman Metal-insulator-metal sandwich structures with anomalous properties , 1976 .

[74]  Per Kofstad,et al.  Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .

[75]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[76]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[77]  K. L. Chopra,et al.  Avalanche‐Induced Negative Resistance in Thin Oxide Films , 1965 .

[78]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[79]  B. Ridley,et al.  Specific Negative Resistance in Solids , 1963 .

[80]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .