Inverse Zero-Sum Problems III

Let $G$ be a finite abeilian group. A sequence $S$ with terms from $G$ is zero-sum if the sum of terms in $S$ equals zero. It is a minimal zero-sum sequence if no proper, nontrivial subsequence is zero-sum. The maximal length of a minimal zero-sum subsequence in $G$ is the Davenport constant, denoted $D(G)$. For a rank 2 group $G=C_n \oplus C_n$, it is known that $D(G)=2n-1$. However, the structure of all maximal length minimal zero-sum sequences remains open. If every such sequence contains a term with multiplicity $n-1$, then $C_n \oplus C_n$ is said to have Property B, and it is conjectured that this is true for all rank 2 groups $C_n \oplus C_n$. In this paper, we show that Property B is multiplicative, namely, if $G=C_n \oplus C_n$ and $G=C_m \oplus C_m$ both satisfy Property B, with $m, n\geq 3$ odd and $mn>9$, then $C_{mn}\oplus C_{mn}$ satisfies Property B also. Combined with previous work in the literature, this reduces the question of establishing Property B to the prime cases, and in such case the complete structural description of the sequence follows.

[1]  Immanuel Halupczok,et al.  Inductive Methods and Zero-Sum Free Sequences , 2007 .

[3]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[4]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[5]  Wolfgang A. Schmid,et al.  On short zero-sum subsequences over p-groups , 2010, Ars Comb..

[6]  Yves Edel,et al.  Zero-sum problems in finite abelian groups and affine caps , 2006 .

[7]  Immanuel Halupczok,et al.  The structure of maximal zero-sum free sequences , 2010 .

[8]  Weidong Gao,et al.  On Long Minimal Zero Sequences in Finite Abelian Groups , 1999 .

[9]  David J. Grynkiewicz On a Conjecture of Hamidoune for Subsequence Sums , 2005 .

[10]  H. Harborth ON SHORT ZERO-SUM SUBSEQUENCES II , 2007 .

[11]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[12]  Yves Edel Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G) , 2008, Des. Codes Cryptogr..

[13]  Weidong Gao,et al.  ON ZERO-SUM SEQUENCES IN Z/nZ⊕ Z/nZ , 2003 .

[14]  Alfred Geroldinger,et al.  Non-unique factorizations , 2006 .

[15]  Christian Elsholtz Lower Bounds For Multidimensional Zero Sums , 2004, Comb..

[16]  Weidong Gao,et al.  Inverse zero-sum problems , 2007 .

[17]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[18]  Yahya Ould Hamidoune Subsequence Sums , 2003, Comb. Probab. Comput..