A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer

[1]  S. Robinson,et al.  Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. , 2016, Cancer cell.

[2]  Jinxiang Zhang,et al.  Aurora kinase A mediates c‐Myc's oncogenic effects in hepatocellular carcinoma , 2015, Molecular carcinogenesis.

[3]  Aurora kinase A in gastrointestinal cancers: time to target , 2015, Molecular Cancer.

[4]  M. Eilers,et al.  Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. , 2015, Cancer research.

[5]  S. Lowe,et al.  In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer , 2014, Nature Medicine.

[6]  Erin F. Simonds,et al.  Drugging MYCN through an allosteric transition in Aurora kinase A. , 2014, Cancer cell.

[7]  R. Kurzrock,et al.  Investigational Aurora A kinase inhibitor alisertib (MLN8237) as an enteric-coated tablet formulation in non-hematologic malignancies: Phase 1 dose-escalation study , 2014, Investigational New Drugs.

[8]  G. Gores,et al.  Hepatocellular carcinoma: clinical frontiers and perspectives , 2014, Gut.

[9]  M. Manns,et al.  A Direct In Vivo RNAi Screen Identifies MKK4 as a Key Regulator of Liver Regeneration , 2013, Cell.

[10]  L. Zender,et al.  T-helper-1-cell cytokines drive cancer into senescence , 2013, Nature.

[11]  M. Rubin,et al.  Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. , 2013, Neoplasia.

[12]  H. El‐Serag,et al.  Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. , 2012, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[13]  Q. Ma,et al.  Alterations of TP53 are associated with a poor outcome for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. , 2012, European journal of cancer.

[14]  S. Zeuzem,et al.  New direct-acting antiviral agents for the treatment of hepatitis C virus infection and perspectives , 2012, Gut.

[15]  M. Roth,et al.  Overcoming CML acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model. , 2012, Carcinogenesis.

[16]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[17]  M. Gerstein,et al.  Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. , 2011, Cancer discovery.

[18]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[19]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[20]  P. Ross,et al.  Emerging strategies in the treatment of advanced hepatocellular carcinoma: the role of targeted therapies , 2011, International journal of clinical practice.

[21]  D. Meek Tumour suppression by p53: a role for the DNA damage response? , 2009, Nature Reviews Cancer.

[22]  Jennafer Dotson,et al.  A class of 2,4-bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B. , 2009, Journal of medicinal chemistry.

[23]  R. Beijersbergen,et al.  Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. , 2009, Cancer cell.

[24]  L. Penn,et al.  Reflecting on 25 years with MYC , 2008, Nature Reviews Cancer.

[25]  A. Krasnitz,et al.  An Oncogenomics-Based In Vivo RNAi Screen Identifies Tumor Suppressors in Liver Cancer , 2008, Cell.

[26]  Junjie Chen,et al.  Aurora A Is Essential for Early Embryonic Development and Tumor Suppression* , 2008, Journal of Biological Chemistry.

[27]  R. Eisenman,et al.  Myc's broad reach. , 2008, Genes & development.

[28]  G. Evan,et al.  Modelling Myc inhibition as a cancer therapy , 2008, Nature.

[29]  T. Kietzmann,et al.  Transcriptional regulation of serine/threonine kinase-15 (STK15) expression by hypoxia and HIF-1. , 2008, Molecular biology of the cell.

[30]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[31]  W. Richard McCombie,et al.  Topoisomerase levels determine chemotherapy response in vitro and in vivo , 2008, Proceedings of the National Academy of Sciences.

[32]  H. Varmus,et al.  Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras , 2008, Proceedings of the National Academy of Sciences.

[33]  Paola Storici,et al.  PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer , 2007, Molecular Cancer Therapeutics.

[34]  R. P. Tamayo Is Cirrhosis of the Liver Experimentally Produced by CC14 an Adequate Model of Human Cirrhosis? , 2007 .

[35]  Jean-Philippe Vert,et al.  An accurate and interpretable model for siRNA efficacy prediction , 2006, BMC Bioinformatics.

[36]  Paola Storici,et al.  1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. , 2006, Journal of medicinal chemistry.

[37]  Ronald A. DePinho,et al.  Hepatocellular carcinoma pathogenesis: from genes to environment , 2006, Nature Reviews Cancer.

[38]  C. Sherr Divorcing ARF and p53: an unsettled case , 2006, Nature Reviews Cancer.

[39]  S. Thorgeirsson,et al.  Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. , 2006, Gastroenterology.

[40]  Corey M. Carlson,et al.  Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Dieter Huesken,et al.  Design of a genome-wide siRNA library using an artificial neural network , 2005, Nature Biotechnology.

[42]  M. Kimura,et al.  Two functional coding single nucleotide polymorphisms in STK15 (Aurora-A) coordinately increase esophageal cancer risk. , 2005, Cancer research.

[43]  Peter White,et al.  Identification of Transcriptional Networks during Liver Regeneration* , 2005, Journal of Biological Chemistry.

[44]  M. Kay,et al.  Genomic progression in mouse models for liver tumors. , 2005, Cold Spring Harbor symposia on quantitative biology.

[45]  I. Ng,et al.  High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. , 2004, Human pathology.

[46]  Christopher H. Contag,et al.  MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer , 2004, Nature.

[47]  E. Calle,et al.  Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms , 2004, Nature Reviews Cancer.

[48]  B. Amati Myc degradation: Dancing with ubiquitin ligases , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Ruderman,et al.  Aurora A, Meiosis and Mitosis , 2004, Biology of the cell.

[50]  Hiroshi Katayama,et al.  The Aurora kinases: Role in cell transformation and tumorigenesis , 2003, Cancer and Metastasis Reviews.

[51]  M. Manns,et al.  Caspase 8 small interfering RNA prevents acute liver failure in mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  John D. Watson,et al.  Identifying Genes Regulated in a Myc-dependent Manner* , 2002, The Journal of Biological Chemistry.

[53]  A. Tannapfel,et al.  INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas , 2001, Oncogene.

[54]  D. Felsher,et al.  Reversible tumorigenesis by MYC in hematopoietic lineages. , 1999, Molecular cell.

[55]  C. Sherr,et al.  Tumor surveillance via the ARF-p53 pathway. , 1998, Genes & development.

[56]  N. Hayashi,et al.  Activation of mitogen‐activated protein kinases/extracellular signal‐regulated kinases in human hepatocellular carcinoma , 1998, Hepatology.

[57]  伊藤 善基 Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma , 1998 .

[58]  I. McKillop,et al.  Increased MAPK expression and activity in primary human hepatocellular carcinoma. , 1997, Biochemical and biophysical research communications.

[59]  Asim Khwaja,et al.  Matrix adhesion and Ras transformation both activate a phosphoinositide 3‐OH kinase and protein kinase B/Akt cellular survival pathway , 1997, The EMBO journal.

[60]  R. Taub Transcriptional control of liver regeneration , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[61]  J. Bishop,et al.  The MYC protein activates transcription of the alpha‐prothymosin gene. , 1991, The EMBO journal.

[62]  R. Pérez Tamayo Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? , 1983, Hepatology.