Ferroelectricity in tetragonal ZrO$_2$ thin films

We report on the crystal structure and ferroelectric properties of epitaxial ZrO$_2$ films ranging from 7 to 42 nm thickness grown on La$_{0.67}$Sr$_{0.33}$MnO$_3$-buffered (110)-oriented SrTiO$_3$ substrate. By employing X-ray diffraction, we confirm a tetragonal phase at all investigated thicknesses, with slight in-plane strain due to the substrate in the thinnest films. Further confirmation of the tetragonal phase was obtained through Infrared absorption spectroscopy with synchrotron light, performed on ZrO$_2$ membrane transferred onto a high resistive Silicon substrate. Up to a thickness of 31 nm, the ZrO$_2$ epitaxial films exhibit ferroelectric behavior, at variance with the antiferroelectric behavior reported previously for the tetragonal phase in polycrystalline films. However, the ferroelectricity is found here to diminish with increasing film thickness, with a polarization of about 13 $\mu$C.cm$^{-2}$ and down to 1 $\mu$C.cm$^{-2}$ for 7 nm and 31 nm-thick ZrO$_2$ films, respectively. This highlights the role of thickness reduction, substrate strain, and surface effects in promoting polarization in the tetragonal ZrO$_2$ thin films. These findings provide new insights into the ferroelectric properties and structure of ZrO$_2$ thin films, and open up new directions to investigate the origin of ferroelectricity in ZrO$_2$ and to optimize this material for future applications.

[1]  T. Mikolajick,et al.  Discovery of Nanoscale Electric Field‐Induced Phase Transitions in ZrO2 , 2023, Advanced Functional Materials.

[2]  Qinghua Zhang,et al.  Polarization Switching and Correlated Phase Transitions in Fluorite‐Structure ZrO2 Nanocrystals (Adv. Mater. 28/2023) , 2023, Advanced materials.

[3]  J. MacManus‐Driscoll,et al.  Ferroelectric Orthorhombic ZrO2 Thin Films Achieved Through Nanosecond Laser Annealing , 2023, Advanced science.

[4]  M. Liao,et al.  HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: A review , 2023, Fundamental research.

[5]  L. Wernersson,et al.  Ferroelectric-Antiferroelectric Transition of Hf1–xZrxO2 on Indium Arsenide with Enhanced Ferroelectric Characteristics for Hf0.2Zr0.8O2 , 2022, ACS applied electronic materials.

[6]  A. Kersch,et al.  Simulation of XRD, Raman and IR spectrum for phase identification in doped HfO2 and ZrO2 , 2022, Frontiers in Nanotechnology.

[7]  J. MacManus‐Driscoll,et al.  Ferroelectricity induced by oxygen vacancies in rhombohedral ZrO 2 thin films , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[8]  R. Tabrizian,et al.  High Quality Factors in Superlattice Ferroelectric Hf0.5Zr0.5O2 Nanoelectromechanical Resonators. , 2022, ACS applied materials & interfaces.

[9]  A. Kersch,et al.  Characteristics of Low‐Energy Phases of Hafnia and Zirconia from Density Functional Theory Calculations , 2022, physica status solidi (RRL) – Rapid Research Letters.

[10]  Huan Tan,et al.  Improved polarization and endurance in ferroelectric Hf0.5Zr0.5O2 films on SrTiO3(110). , 2022, Nanoscale.

[11]  Yurong Yang,et al.  Ferroelectric Hf0.5Zr0.5O2 thin films deposited epitaxially on (110)-oriented SrTiO3 , 2021, Applied Physics Letters.

[12]  H. Funakubo,et al.  Thickness dependence of phase stability in epitaxial (HfxZr1−x)O2 films , 2021, Physical Review Materials.

[13]  L. Largeau,et al.  Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy , 2021, Physical Review Materials.

[14]  E. Tsymbal,et al.  Intrinsic ferroelectricity in Y-doped HfO2 thin films , 2021, Nature Materials.

[15]  G. Saint-Girons,et al.  Stabilization of the Ferroelectric Phase in Epitaxial Hf1–xZrxO2 Enabling Coexistence of Ferroelectric and Enhanced Piezoelectric Properties , 2021, ACS Applied Electronic Materials.

[16]  A. Björling,et al.  Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices , 2021, Science.

[17]  A. Kersch,et al.  New Low‐Energy Crystal Structures in ZrO2 and HfO2 , 2021, physica status solidi (RRL) – Rapid Research Letters.

[18]  J. Shieh,et al.  Sub-7-nm textured ZrO2 with giant ferroelectricity , 2021 .

[19]  D. Kwon,et al.  One Nanometer HfO2‐Based Ferroelectric Tunnel Junctions on Silicon , 2020, Advanced Electronic Materials.

[20]  I. Fina,et al.  Domain-Matching Epitaxy of Ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001) , 2020, 2006.02663.

[21]  O. Nakatsuka,et al.  Ferroelectric phase formation for undoped ZrO2 thin films by wet O2 annealing , 2020, Japanese Journal of Applied Physics.

[22]  Wei Ren,et al.  Towards Reliable Synaptic Simulation using Al-doped HfO2 RRAM. , 2020, ACS applied materials & interfaces.

[23]  J. Íñiguez,et al.  Effect of Dopant Ordering on the Stability of Ferroelectric Hafnia , 2020, physica status solidi (RRL) – Rapid Research Letters.

[24]  B. Cho,et al.  Effect of ZrO2 interfacial layer on forming ferroelectric HfxZryOz on Si substrate , 2019, AIP Advances.

[25]  I. Fina,et al.  Engineering Ferroelectric Hf0.5Zr0.5O2 Thin Films by Epitaxial Stress , 2019, ACS Applied Electronic Materials.

[26]  B. Kang,et al.  Negative capacitance phenomena depending on the wake-up effect in the ferroelectric Si:HfO2 film , 2019, Current Applied Physics.

[27]  P. Nukala,et al.  Magnetic Tunnel Junctions Based on Ferroelectric Hf0.5Zr0.5O2 Tunnel Barriers , 2019, Physical Review Applied.

[28]  Bartolomeo Civalleri,et al.  Quantum‐mechanical condensed matter simulations with CRYSTAL , 2018 .

[29]  Anthony A. Gaskell,et al.  Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals , 2018, Applied Physics Letters.

[30]  R. Hoffmann,et al.  Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics , 2018, Applied Physics Letters.

[31]  J. Íñiguez,et al.  A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films , 2018, Nature Materials.

[32]  C. Hwang,et al.  Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. , 2017, Nanoscale.

[33]  Jr.,et al.  Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration , 2017, 1707.04211.

[34]  Michael J. Hoffmann,et al.  Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2 , 2016 .

[35]  Johannes Müller,et al.  A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide , 2016 .

[36]  A. Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015, 1507.00588.

[37]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[38]  C. S. Hwang,et al.  Thin HfxZr1‐xO2 Films: A New Lead‐Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability , 2014 .

[39]  K. Rabe,et al.  Antiferroelectricity in thin-film ZrO2 from first principles , 2014, 1403.3878.

[40]  D. Popović,et al.  Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions , 2014 .

[41]  Sergei V. Kalinin,et al.  Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories , 2013, 2013 IEEE International Electron Devices Meeting.

[42]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[43]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[44]  Oleg Chubar,et al.  The AILES Infrared Beamline on the third generation Synchrotron Radiation Facility SOLEIL , 2006 .

[45]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[46]  M. Fanciulli,et al.  Structure evolution of atomic layer deposition grown ZrO2 films by deep-ultra-violet Raman and far-infrared spectroscopies , 2003 .

[47]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[48]  E. Kisi,et al.  Crystal Structures of Zirconia Phases and their Inter-Relation , 1998 .

[49]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact with silicon , 1996 .

[50]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[51]  L. Largeau,et al.  Ferroelectric ZrO2 phases from Infrared spectroscopy , 2023, Journal of Materials Chemistry C.

[52]  Chun-Yen Chang,et al.  Implementation of Dopant-Free Hafnium Oxide Negative Capacitance Field-Effect Transistor , 2019, IEEE Transactions on Electron Devices.

[53]  F. Izumi,et al.  Structural Analysis of Orthorhombic ZrO2 by High Resolution Neutron Powder Diffraction , 1990 .

[54]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .

[55]  Wake-up Free Ferroelectric Rhombohedral Phase in Epitaxially Strained ZrO2 Thin Films , 2022 .