Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model

Complex dynamics of the most frequently used tritrophic food chain model are investigated in this paper. First it is shown that the model admits a sequence of pairs of Belyakov bifurcations (codimension-two homoclinic orbits to a critical node). Then fold and period-doubling cycle bifurcation curves associated to each pair of Belyakov points are computed and analyzed. The overall bifurcation scenario explains why stable limit cycles and strange attractors with different geometries can coexist. The analysis is conducted by combining numerical continuation techniques with theoretical arguments.

[1]  T. Gard,et al.  Persistence in food chains with general interactions , 1980 .

[2]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[3]  S Rinaldi,et al.  Singular homoclinic bifurcations in tritrophic food chains. , 1998, Mathematical biosciences.

[4]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[5]  Pierre Gaspard,et al.  Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .

[6]  Y. Kuznetsov,et al.  Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps: physics , 1993 .

[7]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[8]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[9]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[10]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[11]  Teresa Ree Chay,et al.  Chaos in a three-variable model of an excitable cell , 1985 .

[12]  Joseph W.-H. So,et al.  Global stability and persistence of simple food chains , 1985 .

[13]  Sergio Rinaldi,et al.  A separation condition for the existence of limit cycles in slow-fast systems , 1991 .

[14]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[15]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[16]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[17]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[18]  L. A. Belyakov Bifurcation set in a system with homoclinic saddle curve , 1980 .

[19]  J. Rinzel,et al.  Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. , 1988, Biophysical journal.

[20]  Michael Peter Kennedy,et al.  The Colpitts oscillator: Families of periodic solutions and their bifurcations , 2000, Int. J. Bifurc. Chaos.

[21]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[22]  S. Rinaldi,et al.  On the role of body size in a tri-trophic metapopulation model , 1996 .

[23]  A Hunding,et al.  The effect of slow allosteric transitions in a coupled biochemical oscillator model. , 1999, Journal of theoretical biology.

[24]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[25]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[26]  S. Rinaldi,et al.  Yield and Dynamics of Tritrophic Food Chains , 1997, The American Naturalist.

[27]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[28]  Sebastiaan A.L.M. Kooijman,et al.  Complex dynamic behaviour of autonomous microbial food chains , 1997 .

[29]  Christian V. Forst,et al.  A nonlinear dynamical model for the dynastic cycle , 1996 .

[30]  A. Goldbeter,et al.  From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. , 1987, Journal of theoretical biology.

[31]  B W Kooi,et al.  Consequences of population models for the dynamics of food chains. , 1998, Mathematical biosciences.

[32]  B W Kooi,et al.  Food chain dynamics in the chemostat. , 1998, Mathematical biosciences.

[33]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[34]  Kuo-Shung Cheng,et al.  UNIQUENESS OF A LIMIT CYCLE FOR A PREDATOR-PREY SYSTEM* , 1981 .

[35]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[36]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[37]  S. Rinaldi,et al.  Food chains in the chemostat: Relationships between mean yield and complex dynamics , 1998 .

[38]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[39]  John A. Feroe,et al.  Double Impulse Solutions in Nerve Axon Equations , 1982 .