Secret-Sharing for NP

A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a “qualified” subset of parties can efficiently reconstruct the secret while any “unqualified” subset of parties cannot efficiently learn anything about the secret. The collection of “qualified” subsets is defined by a monotone Boolean function.

[1]  Mihir Bellare,et al.  Robust computational secret sharing and a unified account of classical secret-sharing goals , 2007, CCS '07.

[2]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[3]  Allison Bishop,et al.  Indistinguishability Obfuscation from the Multilinear Subgroup Elimination Assumption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[4]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[5]  Allison Bishop,et al.  Witness Encryption from Instance Independent Assumptions , 2014, IACR Cryptol. ePrint Arch..

[6]  Brent Waters,et al.  Witness encryption and its applications , 2013, STOC '13.

[7]  Guy N. Rothblum,et al.  Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding , 2014, TCC.

[8]  Moni Naor,et al.  One-Way Functions and (Im)Perfect Obfuscation , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[9]  Mitsuru Ito,et al.  Multiple assignment scheme for sharing secret , 1993, Journal of Cryptology.

[10]  Moni Naor,et al.  On Cryptographic Assumptions and Challenges , 2003, CRYPTO.

[11]  Yuval Ishai,et al.  On the Power of Nonlinear Secret-Sharing , 2001, IACR Cryptol. ePrint Arch..

[12]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[13]  M. Sipser,et al.  Monotone complexity , 1992 .

[14]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[15]  Hugo Krawczyk,et al.  Secret Sharing Made Short , 1994, CRYPTO.

[16]  Rafael Pass,et al.  Indistinguishability Obfuscation from Semantically-Secure Multilinear Encodings , 2014, CRYPTO.

[17]  Moni Naor,et al.  Secret-Sharing for NP from Indistinguishability Obfuscation , 2014, IACR Cryptol. ePrint Arch..

[18]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2012, JACM.

[19]  Guy N. Rothblum,et al.  Black-box obfuscation for d-CNFs , 2014, ITCS.

[20]  Yael Tauman Kalai,et al.  Protecting Obfuscation against Algebraic Attacks , 2014, EUROCRYPT.

[21]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[22]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[23]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, CRYPTO.

[24]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[25]  Russell Impagliazzo,et al.  A personal view of average-case complexity , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[26]  K. Srinathan,et al.  On the Power of Computational Secret Sharing , 2003, INDOCRYPT.

[27]  Moni Naor,et al.  Magic Functions: In Memoriam: Bernard M. Dwork 1923--1998 , 2003, JACM.

[28]  Michael Sipser,et al.  Boolean Function Complexity: Monotone Complexity , 1992 .

[29]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[30]  Moni Naor,et al.  Bit commitment using pseudorandomness , 1989, Journal of Cryptology.