Environmentally sustainable organic field effect transistors

[1]  Jung-Il Jin,et al.  Materials science of DNA , 2011 .

[2]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[3]  H. Sirringhaus,et al.  High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers , 2010, Advanced materials.

[4]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[5]  Zhenan Bao,et al.  Biomaterials-Based Organic Electronic Devices. , 2010, Polymer international.

[6]  G. Horowitz,et al.  Surface engineering for high performance organic electronic devices: the chemical approach , 2010 .

[7]  Donghoon Choi,et al.  High-mobility bio-organic field effect transistors with photoreactive DNAs as gate insulators , 2010 .

[8]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[9]  G. Whitesides,et al.  Foldable Printed Circuit Boards on Paper Substrates , 2010 .

[10]  James G. Grote,et al.  Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric , 2009 .

[11]  Rajee Olaganathan,et al.  Decolorization of anthraquinone Vat Blue 4 by the free cells of an autochthonous bacterium, Bacillus subtilis. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[12]  Pedro Barquinha,et al.  Selective floating gate non‐volatile paper memory transistor , 2009 .

[13]  George M Whitesides,et al.  Thin, lightweight, foldable thermochromic displays on paper. , 2009, Lab on a chip.

[14]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[15]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[16]  Mihai Irimia-Vladu,et al.  Small-molecule vacuum processed melamine-C60, organic field-effect transistors , 2009 .

[17]  F. Longo,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009 .

[18]  S. Bauer,et al.  Vacuum‐Processed Polyaniline–C60 Organic Field Effect Transistors , 2008 .

[19]  R. Cogdell,et al.  Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids , 2008 .

[20]  S. Bauer,et al.  Mobile Ionic Impurities in Poly(vinyl alcohol) Gate Dielectric: Possible Source of the Hysteresis in Organic Field‐Effect Transistors , 2008 .

[21]  E. Rudnik,et al.  Compostable Polymer Materials , 2008 .

[22]  James G. Grote,et al.  Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric , 2007 .

[23]  M. Nguyen,et al.  The triplet state of indigo: Electronic structure calculations , 2007 .

[24]  H. Gomes,et al.  Voltage- and light-induced hysteresis effects at the high-k dielectric—poly(3-hexylthiophene) interface , 2007 .

[25]  刘佳乐,et al.  Degradation of anthraquinone dyes by ozone , 2007 .

[26]  ANDREW J. STECKL,et al.  DNA – a new material for photonics? , 2007 .

[27]  S. Sirianuntapiboon,et al.  Some properties of a sequencing batch reactor system for removal of vat dyes. , 2006, Bioresource technology.

[28]  S. Bauer,et al.  High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films , 2005 .

[29]  Albert J. J. M. van Breemen,et al.  High‐Performance Solution‐Processable Poly(p‐phenylene vinylene)s for Air‐Stable Organic Field‐Effect Transistors , 2005 .

[30]  Bernhard Lamprecht,et al.  Organic photodiodes on newspaper , 2005 .

[31]  Colin J. Green,et al.  Differential Activation of Heme Oxygenase-1 by Chalcones and Rosolic Acid in Endothelial Cells , 2005, Journal of Pharmacology and Experimental Therapeutics.

[32]  P. Rouvière,et al.  Electrical properties of polyunsaturated natural products: field effect mobility of carotenoid polyenes , 2004 .

[33]  Jan R. Gronow,et al.  Hazardous Components of Household Waste , 2004 .

[34]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[35]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[36]  Weida Tong,et al.  Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. , 2003, Chemical research in toxicology.

[37]  Akihiko Fujiwara,et al.  Fabrication and characterization of C60 thin-film transistors with high field-effect mobility , 2003 .

[38]  Janos Veres,et al.  A novel gate insulator for flexible electronics , 2003 .

[39]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[40]  N. Krinsky,et al.  Introduction: The colorful, fascinating world of the carotenoids: important physiologic modulators , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  Tomas Gillbro,et al.  Beta-carotene S1 fluorescence , 1995, Other Conferences.

[42]  D. Moses,et al.  Gap states of iodine-doped β-carotene , 1992 .

[43]  Schuurmans,et al.  Thin , 2020, Physical review. B, Condensed matter.

[44]  T. N. Misra,et al.  Effect of adsorption of gases on the semiconductive properties of all-trans beta-carotene. , 1968, The Journal of chemical physics.

[45]  A. Baeyer,et al.  Darstellung von Indigblau aus Orthonitrobenzaldehyd , 1882 .