The latitudinal variation of geoelectromagnetic disturbances during large (Dst⛤â‹TM100€nT) geomagnetic storms

Geoelectromagnetic disturbances (GMDs) are an important consequence of space weather that can directly impact many types of terrestrial infrastructure. In this paper, we analyze 30 years of SuperMAG magnetometer data from the range of magnetic latitudes 20°≤λ≤75° to derive characteristic latitudinal profiles for median GMD amplitudes. Based on this data, we obtain a parameterization of these latitudinal profiles of different types of GMDs, providing an analytical fit with Dst-dependent parameters. We also obtain probabilistic estimates for the magnitudes of “100 year” GMDs, finding that Ḃ = 6.9 (3.60–12.9) nT/s should be expected at 45°≤ λ< 50°, exceeding the 5 nT/s threshold for dangerous inductive heating.

[1]  David H. Boteler,et al.  The Evolution of Québec Earth Models Used to Model Geomagnetically Induced Currents , 2015, IEEE Transactions on Power Delivery.

[2]  Emanuel Bernabeu,et al.  Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements , 2015 .

[3]  A. Pulkkinen,et al.  On the lognormality of historical magnetic storm intensity statistics: Implications for extreme‐event probabilities , 2015 .

[4]  D. Danskin,et al.  Analysis of geomagnetic hourly ranges , 2015 .

[5]  T. Pulkkinen,et al.  MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations , 2014 .

[6]  Lisa H. Wei,et al.  Surface electric fields for North America during historical geomagnetic storms , 2013 .

[7]  N. Y. Ganushkina,et al.  Defining and resolving current systems in geospace , 2013, 1701.04714.

[8]  G. Crowley,et al.  Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications , 2013 .

[9]  A. Ádám,et al.  Estimation of the electric resistivity distribution (EURHOM) in the European lithosphere in the frame of the EURISGIC WP2 project , 2012, Acta Geodaetica et Geophysica Hungarica.

[10]  Jesper Gjerloev,et al.  The SuperMAG data processing technique , 2012 .

[11]  P. Newell,et al.  SuperMAG‐based partial ring current indices , 2012 .

[12]  C. Beggan,et al.  Generation of 100‐year geomagnetically induced current scenarios , 2012 .

[13]  Alan W. P. Thomson,et al.  Quantifying extreme behavior in geomagnetic activity , 2011 .

[14]  Vladimir Kossobokov,et al.  Extreme events: dynamics, statistics and prediction , 2011 .

[15]  T. Saemundsson,et al.  Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices , 2011 .

[16]  B. J. Fraser,et al.  EMIC wave activity during geomagnetic storm and nonstorm periods: CRRES results , 2010 .

[17]  Mike Hapgood,et al.  Space weather : its impact on Earth and implications for business , 2010 .

[18]  C. Waters,et al.  Spectral analysis of pipe‐to‐soil potentials with variations of the Earth's magnetic field in the Australian region , 2010 .

[19]  T. Kikuchi,et al.  Magnetic latitude and local time dependence of the amplitude of geomagnetic sudden commencements , 2008 .

[20]  N. G. Ptitsyna,et al.  Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway , 2008 .

[21]  R. Pirjola,et al.  Effects of Strong Geomagnetic Storms on Northern Railways in Russia , 2007, 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology.

[22]  Orsi Baillie,et al.  Space weather effects on drilling accuracy in the North Sea , 2005 .

[23]  C. Russell,et al.  Morphology of the ring current derived from magnetic field observations , 2004 .

[24]  John G. Kappenman,et al.  Storm sudden commencement events and the associated geomagnetically induced current risks to ground‐based systems at low‐latitude and midlatitude locations , 2003 .

[25]  D. H. Boteler,et al.  Assessment of Geomagnetic Hazard to Power Systems in Canada , 2001 .

[26]  Antti Pulkkinen,et al.  Time derivative of the horizontal geomagnetic field as an activity indicator , 2001 .

[27]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[28]  Y. Kamide,et al.  Two‐component auroral electrojet: Importance for substorm studies , 1996 .

[29]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[30]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[31]  T. Phan,et al.  Variation of auroral electrojet spatial location as a function of the level of magnetospheric activity , 1986 .

[32]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[33]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[34]  Norbert Sckopke,et al.  A general relation between the energy of trapped particles and the disturbance field near the Earth , 1966 .

[35]  James R. Wait Transmission and reflection of electromagnetic waves in the presence of stratified media , 1958 .

[36]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[37]  Matthew. Vlissides,et al.  TRANSMISSION SYSTEM PLANNED PERFORMANCE FOR GEOMAGNETIC DISTURBANCE EVENTS , 2014 .

[38]  R. Pirjola,et al.  Recordings of Geomagnetically Induced Currents in the Finnish Natural Gas Pipeline -- Summary of an 11-year Period , 2010 .

[39]  H. Gleisner,et al.  Temporal versus spatial geomagnetic variations along the west coast of Greenland , 2006 .

[40]  David Boteler,et al.  The effects of geomagnetic disturbances on electrical systems at the earth's surface , 1998 .

[41]  M. Schulz Direct influence of ring current on auroral oval diameter , 1997 .

[42]  Gerd W. Prölss,et al.  Classification and mean behavior of magnetic storms , 1997 .