Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties

Abstract Alloys based on the near-equiatomic FeCo offer exceptional magnetic properties. The equiatomic alloy was ‘invented’ in 1929, it offers a saturation hardly lower than that of the maximum obtained for Fe–0.35Co, with higher permeability and a lower coercivity than the latter. However, this alloy remained without industrial application, mainly because of its extreme brittleness. Only with the addition of a third element did it become possible to impart sufficient ductility for cold-rolling, and develop applications as laminated products. The addition of 2 wt% vanadium (1932) led to the ubiquitous FeCo–2V, or Permendur. It not only imparts, given appropriate heat-treatments, sufficient ductility, but also increases significantly the resistivity of the alloy while having little impact on the saturation. From a scientific point of view, the FeCo alloys, with their B2 structure below 730 °C, fall in the interesting category of ordered compounds. The ordering reaction has significant influence on the mechanical and magnetic properties and has therefore prompted a number of investigations. Not surprisingly, the vast majority of the work published to date concerns the FeCo–2V or its variants, rather than the binary alloy or other ternary systems. Recently though, alternative compositions, or improvement on the basic FeCo–2V have been put forward. This review attempts to summarise the current knowledge about the constitution, mechanical and magnetic properties of these alloys, focussing on the general properties of bulk FeCo and FeCo–X alloys (developed for applications such as rotor or stator laminations in motors). Recent development of nanocomposite and nanocrystalline materials such as HITPERM are not considered. A review of this developments is available in [McHenry ME, Willard MA, Laughlin DE. Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 1999;44:291–433]. An overview is given of work undertaken to date on various FeCo–X ternary system, with emphasis on the influence of these ternary additions on microstructure and characteristics of the phase diagram. The problem of the kinetics of ordering is given particular attention. Magnetic and mechanical properties are then discussed with emphasis on the relationship between microstructure and properties, and the main quantitative theories put forward are assessed again data gathered from the literature. It is shown that, while some points are clearly understood, a number of question remains in different areas which are outlined.

[1]  R. Buckley Microstructure and Kinetics of the Ordering Transformation in Iron–Cobalt Alloys, FeCo, FeCo–0.4%Cr, FeCo–2.5%V , 1975 .

[2]  R. Buckley Ordering and recrystallization in Fe-50Co-0.4%Cr , 1979 .

[3]  R. Rawlings,et al.  A study of the microstructure and related magnetic/mechanical properties of some iron-cobalt-vanadium and iron-cobalt-vanadium-nickel alloys , 1980 .

[4]  P. Moine,et al.  Cinetiques d'etablissement de l'ordre dans un alliage FeCoV ecroui , 1973 .

[5]  V. G. Rivlin 6: Critical evaluation of constitution of cobalt–chromium–iron and cobalt–iron–nickel systems , 1981 .

[6]  John Q. Xiao,et al.  High temperature soft magnetic materials: feco alloys and composites , 2000 .

[7]  J. F. Dinhut,et al.  Thermal ordered domains and mechanical antiphase boundaries as studied by electron microscopy in FeCoV , 1974 .

[8]  R. Rawlings,et al.  Effect of niobium additions on the structure and magnetic properties of equiatomic iron-cobalt alloys , 1991 .

[9]  D. Thornburg High‐Strength High‐ductility Cobalt‐Iron Alloys , 1969 .

[10]  J. Bennett,et al.  Aspects of phase equilibria in Fe/Co/2.5 to 3.0% V alloys , 1974 .

[11]  K. Kawahara Effect of additive elements on cold workability in FeCo alloys , 1983 .

[12]  M. McHenry,et al.  Magnetic Properties and Ordering in C-Coated FexCo1-x Alloy Nanocrystals , 1998 .

[13]  J. F. Libsch,et al.  Effect of ternary additions of silicon and aluminum on the ordering reaction in iron-cobalt , 1955 .

[14]  H. Chessin,et al.  Relationship between flow stress and atomic order in the FeCo alloy , 1964 .

[15]  M. Yoo,et al.  Yield Stress Anomaly in B2 FeAl , 1996 .

[16]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[17]  J. Goldstein,et al.  Redetermination of the Fe-rich portion of the Fe−Ni−Co phase diagram , 1977 .

[18]  D. Z. Zhang,et al.  Temperature dependent mechanical properties of ultra-fine grained FeCo–2V , 2003 .

[19]  P. Bloomfield,et al.  A Calorimetric Study of Iron–Cobalt Alloys , 1975 .

[20]  S. Siegel,et al.  Neutron Diffraction Studies of Order-Disorder in Alloys , 1949 .

[21]  R. Rawlings,et al.  Microstructure of Fe–Co–2V and Fe–Co–V–Ni alloys containing 1·8–7·4 wt-%Ni , 1981 .

[22]  D. Z. Zhang,et al.  Magnetic core loss of ultrahigh strength FeCo alloys , 2003 .

[23]  G. Gray,et al.  The yield stress anomaly in stoichiometric FeAl at high strain rate , 1999 .

[24]  M. Rajković,et al.  Ordering transformations in Fe-50Co based alloys , 1981 .

[25]  J. Eymery,et al.  Ordering kinetics of various FeCo alloys , 1974 .

[26]  Richard Todd Fingers,et al.  Creep Behavior Of Thin Laminates Of Iron-Cobalt Alloys For Use In Switched Reluctance Motors And Generators , 1999 .

[27]  P. Novotny The effect of nickel content on the ac magnetic properties of 49Fe‐49Co‐2V alloys , 1988 .

[28]  R. G. Davies,et al.  The plastic deformation of ordered FeCo and Fe3 Al alloys , 1964 .

[29]  M. Rezende,et al.  Phase characterization in the Fe−Co−V and Fe−Co−Nb systems , 1991 .

[30]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[31]  T. Sourmail Precipitation in creep resistant austenitic stainless steels , 2001 .

[32]  Z. Turgut,et al.  Effect of aging on magnetic properties of Hiperco® 27, Hiperco® 50, and Hiperco 50 HS® alloys , 2002 .

[33]  K. Kawahara Effect of cold rolling on the mechanical properties of an FeCo-2V alloy , 1983 .

[34]  R. V. Major,et al.  High saturation ternary cobalt-iron basalt alloys , 1988 .

[35]  R. Rawlings,et al.  Gamma phase in an Fe-Co-2%V alloy , 1977 .

[36]  I. Baker,et al.  The temperature dependence of the flow and fracture of Fe-40Al , 1993 .

[37]  R. Lathe Phd by thesis , 1988, Nature.

[38]  P. Moine,et al.  Étude par diffraction des rayons X de l'influence des lacunes sur la restauration de l'ordre dans l'alliage Fe-Co-V , 1973 .

[39]  M. Marcinkowski,et al.  The effect of atomic order on fracture surface morphology , 1970, Metallurgical and Materials Transactions B.

[40]  I. Baker,et al.  The effect of grain size and Fe:Co ratio on the room temperature yielding of FeCo , 1994 .

[41]  R. Rawlings,et al.  Effects on some physical properties of soft magnetic Fe-Co alloys due to the replacement of vanadium by niobium , 1990 .

[42]  W. Köster,et al.  Das System Eisen-Kobalt-Mangan , 1933 .

[43]  R. Rawlings,et al.  A neutron diffraction study of ordering in an iron–cobalt–1.8% vanadium alloy , 1976 .

[44]  N. Stoloff,et al.  Plastic deformation and fracture in FeCo-2 percent V , 1969 .

[45]  J. Xiao,et al.  Magnetic domains and coercivity in FeCo soft magnetic alloys , 1999 .

[46]  C. Allibert,et al.  Solid state phase equilibrium in the ternary FeCoCr system: Experimental determination of isothermal sections in the temperature range 800 – 1300 °C , 1979 .

[47]  R. Rawlings,et al.  Lüders strain and ductility of ordered Fe–Co–2V and Fe–Co–V–Ni alloys , 1983 .

[48]  R. T. Fingers,et al.  Application of high temperature magnetic materials , 2000 .

[49]  W. Köster Mechanische und magnetische Ausscheidungshärtung der Eisen-Kobalt-Wolfram- und Eisen-Kobalt-Molybdän-Legierungen , 1932 .

[50]  L. Schultz,et al.  Formation and magnetic properties of nanocrystalline mechanically alloyed Fe‐Co and Fe‐Ni , 1993 .

[51]  I. Baker,et al.  On the yield stress anomaly in stoichiometric FeAl , 1997 .

[52]  J. Xiao,et al.  Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys , 1999 .

[53]  S. Mahajan,et al.  Influence of heat treatments on microstructures in an Fe-Co-V alloy , 1974, Metallurgical and Materials Transactions B.

[54]  T. P. Weihs,et al.  Microstructure and Hall-Petch behavior of Fe-Co-based Hiperco© alloys , 2000 .

[55]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[56]  Y. Ustinovshikov,et al.  Character of transformations in Fe–Co system , 1998 .

[57]  J. Xiao,et al.  Mechanical properties of Fe-Co soft magnets , 2001 .

[58]  J. Ardisson,et al.  Gamma to alpha phase transformation in FeCoV alloys , 1994 .

[59]  J. Bennett,et al.  Correlation of magnetic and mechanical properties with microstructure in Fe/Co/2-3 pct V alloys , 1974, Metallurgical and Materials Transactions B.

[60]  W. Köster Das System Eisen-Kobalt-Chrom , 1932 .

[61]  R. Smoluchowski,et al.  Influence of Order on the Saturation Magnetic Moment , 1949 .

[62]  Lin Li High temperature magnetic properties of 49%Co-2%V-Fe alloy , 1996 .

[63]  Ne Dowling,et al.  Creep deformation of a soft magnetic iron–cobalt alloy , 1999 .

[64]  Benjamin Thomas Hailer,et al.  Effect of Heat Treatment on Magnetic and Mechanical Properties of an Iron-Cobalt-Vanadium-Niobium Alloy , 2001 .

[65]  R. Zee,et al.  Effects of deviations from stoichiometry on the strength anomaly and fracture behavior of B-doped FeAl , 1995 .

[66]  C. W. Chen Metallurgy and Magnetic Properties of an Fe-Co-V Alloy , 1961 .

[67]  W. Köster,et al.  Das System Eisen-Kobalt-Molybdän , 1932 .

[68]  R. Rawlings,et al.  The Electron Metallography of Antiphase Domain Growth in FeCo–2%V , 1975 .

[69]  W. Köster,et al.  Das System Eisen-Kobalt-Wolfram , 1932 .

[70]  R. Rawlings,et al.  Correlation of electrical resistivity with microstructure in an Fe-Co-2% V alloy , 1978 .

[71]  D. G. Morris The yield stress anomaly in Fe-Al alloys: the local climb lock model , 1995 .

[72]  A. Davis,et al.  The formation of gamma phase in Vanadium Permendur , 1970, Metallurgical and Materials Transactions B.

[73]  W. Shockley,et al.  Order-Disorder Transformations in Alloys , 1938 .

[74]  T. Sourmail Comments on ‘Character of transformations in Fe–Co system’ , 2005 .

[75]  E. George,et al.  A model for the yield strength anomaly of Fe—Al , 1998 .

[76]  J. Eymery,et al.  The Effects of Short-Range Order and Long-Range Order on the Equilibrium Configuration of Superdislocations in FeCo : 2 at% V — Consequences on Flow Stress , 1971 .

[77]  K. Ishida,et al.  Phase equilibria in the Fe-Co binary system , 2002 .

[78]  D. W. Clegg,et al.  The Disorder → Order Transformation in Iron–Cobalt-Based Alloys , 1973 .

[79]  E. Pereloma,et al.  An alternative physical explanation of the Hall–Petch relation , 2004 .

[80]  E. George,et al.  Mechanical properties of soft magnetic FeCo alloys , 2002 .

[81]  T. Sourmail Evolution of strength and coercivity during annealing of FeCo based alloys , 2004 .

[82]  C. T. Liu,et al.  High-temperature ordered intermetallic alloys , 1985 .

[83]  E. George,et al.  Thermal vacancies and the yield anomaly of FeAl , 1998 .

[84]  S. Khanna,et al.  Magnetic properties of Al, V, Mn, and Ru impurities in Fe–Co alloys , 2003 .

[85]  P. Moine,et al.  Nature de la transformation desordre-ordre dans les alliages fer-cobalt. Influence de l'addition de vanadium , 1976 .

[86]  K. Kawahara Structures and mechanical properties of an FeCo-2V alloy , 1983 .

[87]  Y. Chang,et al.  Point defect concentrations and hardening in binary B2 intermetallics , 1997 .

[88]  J. B. Forsyth,et al.  The magnetic moment distribution in some transition metal alloys , 1963 .

[89]  L. Li,et al.  An increase of structural order parameter in Fe–Co–V soft magnetic alloy after thermal aging , 1996 .

[90]  M. Kupka Temperature dependence of the yield stress of an FeAl base alloy , 2002 .

[91]  M. Marcinkowski The Effect of Atomic Order on the Mechanical Properties of Alloys with Emphasis on FeCo , 1974 .

[92]  T. L. Johnston,et al.  Slip character and the ductile to brittle transition of single-phase solids , 1965 .

[93]  W. Köster,et al.  Das Dreistoffsystem Eisen-Kobalt-Vanadin: Teil I. Ausbildung des Dreistoffsystems bei gehemmter α/γ-Umwandlung , 1955 .