Topological Index and Thermodynamic Properties. III. Classification of Various Topological Aspects of Properties of Acyclic Saturated Hydrocarbons

To elucidate the physical meaning of the structure-activity relationship of alkanes, correlation coefficients between 24 thermodynamic properties of hexane, heptane, octane, and nonane isomers and four different topological indices were calculated. These properties were classified into five different types depending on the signs and magnitudes of their correlation coefficients with the two indices, Z and p3. It is interpreted that Z and p3, respectively, represent the dynamical and static features of the topological properties of molecules. The merit of correlation pattern recognition is demonstrated.

[1]  M. Gordon,et al.  Non-random polycondensation : statistical theory of the substitution effect , 1964 .

[2]  H. Wiener Vapor pressure-temperature relationships among the branched paraffin hydrocarbons. , 1948, The Journal of physical and colloid chemistry.

[3]  Richard D. Cramer BC(DEF) parameters. 2. An empirical structure-based scheme for the prediction of some physical properties , 1980 .

[4]  Haruo Hosoya,et al.  Topological Index and Thermodynamic Properties. I. Empirical Rules on the Boiling Point of Saturated Hydrocarbons , 1972 .

[5]  D. W. Scott Correlation of the chemical thermodynamic properties of alkane hydrocarbons , 1974 .

[6]  H. Wiener Relation of the physical properties of the isomeric alkanes to molecular structure; surface, tension, specific dispersion, and critical solution temperature in aniline. , 1948, The Journal of physical and colloid chemistry.

[7]  J. Platt Prediction of Isomeric Differences in Paraffin Properties , 1952 .

[8]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[9]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[10]  W. Person,et al.  Thermodynamic Properties and the Characteristic CH2 Frequencies of n-Paraffins , 1953 .

[11]  Correlation of alkane solubilities in water with connectivity index , 1982 .

[12]  H. Wiener Correlation of Heats of Isomerization, and Differences in Heats of Vaporization of Isomers, Among the Paraffin Hydrocarbons , 1947 .

[13]  Alexandru T. Balaban,et al.  Chemical graphs , 1979 .

[14]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[15]  G. R. Somayajulu,et al.  Generalized treatment of alkanes. Part 2 , 1972 .

[16]  K. Altenburg Zur Berechnung des Radius verzweigter Moleküle , 1961 .

[17]  G. Mann Konformation und physikalische daten von alkanen und cyclanen—I : Über lineare beziehungen zwischen der konformation und den physikalischen daten isomerer kohlenwasserstoffe , 1967 .

[18]  G. R. Somayajulu,et al.  Generalized treatment of alkanes , 1966 .

[19]  F. Rossini,et al.  Method for calculating the properties of hydrocarbons and its application to the refractive indices, densities, and boiling points of the paraffin and monoolefin hydrocarbons , 1945 .

[20]  Kenneth S. Pitzer,et al.  The Vibration Frequencies and Thermodynamic Functions of Long Chain Hydrocarbons , 1940 .

[21]  Haruo Hosoya,et al.  Topological Index and Thermodynamic Properties. II. Analysis of the Topological Factors on the Absolute Entropy of Acyclic Saturated Hydrocarbons , 1980 .

[22]  Charles L. Wilkins,et al.  Graph theoretical ordering of structures as a basis for systematic searches for regularities in molecular data , 1979 .

[23]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[24]  Nenad Trinajstić,et al.  Chemical graph theory: Modeling the thermodynamic properties of molecules , 1980 .