Convergence from clusters to the bulk solid: Ab initio calculations of (MgO)(x) (x=2-16) clusters

The electronic structures of a series of (MgO)x (x=2–16) clusters cut out from MgO solid have been calculated by means of ab initio method. The convergence of the electronic properties and the adsorption properties of (MgO)x clusters with the increase of cluster size has been investigated. The calculation results demonstrated a good correlation of the topologic parameters Nd (the total amount of dangling bonds of a cut-out cluster) and β (the average dangling bonds on each in-cluster atom) with the stability of clusters, which not only provides an efficient way to set up a good cluster model of a given size without paying for the high cost of detailed preliminary calculations, but also ensures a good convergence from the cluster to the surface. Atomic O adsorption on differently coordinated pair sites of OXC–MgYC has been considered with cubic (MgO)x ( x=4, 6, 8) cluster models. The calculation results show the adsorption is more site dependent than size dependent and the cubic (MgO)x models provide a convergent description of the reactivity in the order of O3C–Mg3C>O4C–Mg3C>O3C–Mg4C>O4c–Mg4c. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 377–386, 1999

[1]  H. Nakatsuji,et al.  Cluster modeling of metal oxides: the influence of the surrounding point charges on the embedded cluster , 1998 .

[2]  H. Nakatsuji,et al.  CLUSTER MODELING OF METAL OXIDES : HOW TO CUT OUT A CLUSTER? , 1998 .

[3]  S. Coluccia,et al.  Unimportance of the Surrounding Lattice in the Adsorption of CO on Low-Coordinated Mg Sites of MgO , 1998 .

[4]  A. Ayuela,et al.  Structural and Electronic Properties of Small Neutral (MgO) n Clusters , 1997, physics/9706030.

[5]  E. Longo,et al.  Ab initio and semiempirical MO studies using large cluster models of CO and H2 adsorption and dissociation on ZnO surfaces with the formation of ZnH and OH species , 1997 .

[6]  M. Gillan,et al.  Adsorption of atomic and molecular oxygen on the MgO (001) surface , 1997 .

[7]  T. Bredow,et al.  Embedding procedure for cluster calculations of ionic crystals , 1996 .

[8]  K. Jug,et al.  Quantum chemical study of carbon monoxide adsorption at the MgO(100) surface , 1996 .

[9]  J. Simons,et al.  Why Are (MgO)n Clusters and Crystalline MgO So Reactive , 1996 .

[10]  Xin Xu,et al.  Chemisorption on metal surfaces: Cluster model studies , 1996 .

[11]  M. Gillan,et al.  Adsorption of atomic oxygen on the MgO (100) surface , 1996 .

[12]  R. Pandey,et al.  Density functional study of structural and electronic properties of cube-like MgO clusters , 1995 .

[13]  E. Longo,et al.  A theoretical study of (1010) and (0001) ZnO surfaces: molecular cluster model, basis set and effective core potential dependence , 1995 .

[14]  L. Pettersson,et al.  Theoretical modelling of metal oxides. Influence of field strength on atomic oxygen adsorption and a simple model reaction: Oads+CO → CO2 , 1994 .

[15]  Joachim Sauer,et al.  Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment , 1994 .

[16]  K. Morokuma,et al.  An ab initio molecular orbital study on adsorption at the MgO surface. II. Site dependence of hydrogen chemisorption on the (MgO)4,6,8 clusters , 1994 .

[17]  C. Ochsenfeld,et al.  An ab initio investigation of structure and energetics of clusters KnCln and LinFn , 1994 .

[18]  T. Bredow,et al.  Theoretical investigations on adsorption at ion crystal surfaces , 1993 .

[19]  Gerald Geudtner,et al.  Binding energies and bond distances of ion crystal clusters , 1993 .

[20]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[21]  A. Ayuela,et al.  Molecular orbital calculations on (MgO)n and (MgO)n+ clusters (n=1–13) , 1993 .

[22]  A. Ayuela,et al.  Quantum mechanical calculations of stoichiometric MgO clusters , 1993 .

[23]  H. Freund,et al.  Adsorption on ordered surfaces of ionic solids and thin films : proceedings of the 106th WE-Heraeus Seminar, Bad Honnef, Germany, February 15-18, 1993 , 1993 .

[24]  C. Ochsenfeld,et al.  Theoretical Treatment of Sodium Chloride Clusters , 1992 .

[25]  C. Ochsenfeld,et al.  An ab initio investigation of clusters NanCln , 1992 .

[26]  M. Kappes,et al.  Ab initio studies of small sodium–sodium halide clusters, NanCln and NanCln−1 (n≤4) , 1992 .

[27]  A. Hess,et al.  Periodic Hartree–Fock studies of the properties of the Cl2/MgO (001) interface , 1992 .

[28]  E. Colbourn,et al.  Computer simulation of defects and reactions at oxide surfaces , 1992 .

[29]  G. Pacchioni,et al.  Cluster Models for Surface and Bulk Phenomena , 1992 .

[30]  M. Witko Oxidation of hydrocarbons on transition metal oxide catalysts — quantum chemical studies , 1991 .

[31]  L. Tjeng,et al.  Electronic structure of MgO studied by angle-resolved ultraviolet photoelectron spectroscopy , 1990 .

[32]  P. Siegbahn,et al.  The nature of the surface chemical bond: a comparison between the molecular and solid state pictures , 1990 .

[33]  A. Kunz Cluster modeling of solid state defects and adsorbates: Beyond the hartree–fock level , 1990 .

[34]  J. Sauer Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts , 1989 .

[35]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[36]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[37]  W. C. Walker,et al.  Electronic spectrum and ultraviolet optical properties of crystalline MgO. , 1967 .