A study of Ni‐Ge interdiffusion on GaAs using rapid thermal annealing with temperature standards

A new technique for probing rapid material interactions at low temperatures has been developed. Rapid thermal annealing at 200 and 250 °C is exploited as a temperature‐time probe to study the fast kinetics of Ni‐Ge and Ni‐Ge‐Au contact metallizations on GaAs. Temperature standards are employed to establish known reaction temperatures within −3 to +13 °C of nominal, while anneal times are limited to 30 s or less. Rutherford backscattering analysis of annealed samples indicate that Ge consumption obeys parabolic kinetics, most likely limited by Ni diffusion, consistent with the growth of a NixGe phase. An activation energy estimate ≊0.7 eV is shown to be consistent with the fast interdiffusion observed, which is attributed to a grain boundary mechanism. The presence of Au plays only a limited role in the reaction for the temperatures and times studied.

[1]  S. S. Gill,et al.  Rapid IR lamp alloying of nickel-based ohmic contacts on n-GaAs , 1988 .

[2]  C. B. Carter,et al.  Lateral diffusion in Ni–GaAs couples investigated by transmission electron microscopy , 1988 .

[3]  T. Sands,et al.  Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases , 1988 .

[4]  D. Steigerwald,et al.  Short‐range order in submonolayer Ni on GaAs(110) by x‐ray photoelectron forward scattering , 1988 .

[5]  K. Kavanagh,et al.  Ohmic contacts to n‐GaAs using In/Pd metallization , 1987 .

[6]  Thomas F. Kuech,et al.  Nonalloyed ohmic contacts to n-GaAs by solid-phase epitaxy of Ge , 1987 .

[7]  J. Merz,et al.  Rapid thermal alloyed ohmic contact on inp , 1987 .

[8]  A. Callegari,et al.  Microstructure studies of AuNiGe Ohmic contacts to n‐type GaAs , 1986 .

[9]  C. B. Carter,et al.  Transmission electron microscopy studies on lateral reaction of GaAs with Ni , 1986 .

[10]  T. Sands,et al.  Structure and composition of NixGaAs , 1985 .

[11]  S. Ingrey,et al.  Auger studies on rapid grain boundary diffusion of Ge through Au , 1984 .

[12]  G. Majni,et al.  Lateral diffusion of Ni and Si through Ni2Si in Ni/Si couples , 1982 .

[13]  M. Ogawa Alloying reaction in thin nickel films deposited on GaAs , 1980 .

[14]  M. Nicolet,et al.  Annealing behavior of Ge_Au_Ni, Ge_Au_Pt and Ge_Au_Pd trilayered films , 1977 .

[15]  M. Nicolet,et al.  Investigation of the AuGeNi system used for alloyed contacts to GaAs , 1977 .

[16]  M. Nicolet,et al.  The first phase to nucleate in planar transition metal-germanium interfaces , 1977 .

[17]  W. Chu,et al.  Structure and growth kinetics of Ni2Si on silicon , 1975 .

[18]  J. Poate,et al.  Kinetics and mechanism of platinum silicide formation on silicon , 1974 .

[19]  R. Carter,et al.  RAPS-a rapid thermal processor simulation program , 1989 .

[20]  A. Botha,et al.  Solid state diffusion in GaAs/AuGe/Ni and GaAs/Ni/AuGe/Ni ohmic contacts , 1989 .

[21]  D. Gupta Special Aspects of Diffusion in Metallic Thin Films , 1985 .

[22]  R. Sheets Temperature Measurement and Control in a Rapid Thermal Processor , 1985 .

[23]  J. Hoyt,et al.  Rapid Thermal Annealing of As in Si , 1985 .

[24]  M. J. Howes,et al.  Gallium arsenide : materials devices and circuits , 1985 .

[25]  C. Pai,et al.  Metal-Germanium Contacts and Germanide Formation , 1985 .