Top-illuminated PIN photodetectors (PDs) are widely utilized in telecommunication systems, and more efforts have been focused on optimizing the optical responsibility and bandwidth for high-speed and capacity applications. In this work, we develop an integrated top-illuminated InP/InGaAs PIN PD with a back reflector by using a microtransfer printing (µ-TP) process. An improved µ-TP process, where the tether of silicon nitride instead of photoresist, is selected to support an underetched III-V device on an InP substrate before transfer. According to theoretical simulations and experimental measurements, the seamless integration of the PD with a back reflector through µ-TP process makes full use of the 2nd or even multiple reflecting light in the absorption layer to optimize the maximum responsibility. The integrated device with a 5 µm square p-mesa possesses a high optical responsibility of 0.78 A/W and 3 dB bandwidth of 54 GHz using a 500 nm i-InGaAs absorption layer. The present approach for top-illuminated PIN PDs demonstrates an advanced route in which a thin intrinsic layer is available for application in high-performance systems.