Controlling Agents in Smart Matter with Global Constraints

Smart matter consists of sensors, actuators and computers embedded in materials to give precise and flexible control over their physical properties. We describe how globM constraints and local agents can be combined to control the overall behaviors of smart matter in a simple, robust manner. We present several examples of such systems.

[1]  F. Hayek Competition as a Discovery Procedure , 2020, Shaping Entrepreneurship Research.

[2]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[3]  David Tabor,et al.  States of matter , 1975, Nature.

[4]  G. Perry,et al.  Sensor-based robotic assembly systems: Research and applications in electronic manufacturing , 1983, Proceedings of the IEEE.

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Bjørn N. Freeman-Benson,et al.  Constraint hierarchies , 1987, OOPSLA '87.

[7]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[8]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[9]  Edmund H. Durfee,et al.  THE DISTRIBUTED ARTIFICIAL INTELLIGENCE MELTING POT , 1991 .

[10]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[11]  Tad Hogg,et al.  Controlling chaos in distributed systems , 1991, IEEE Trans. Syst. Man Cybern..

[12]  David Upton,et al.  A Flexible Structure for Computer-Controlled Manufacturing Systems , 1992 .

[13]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[14]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[15]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[16]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[17]  K. Nagel LIFE TIMES OF SIMULATED TRAFFIC JAMS , 1993, cond-mat/9310018.

[18]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[19]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[20]  Peter M. Will,et al.  Parts manipulation on an intelligent motion surface , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[21]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ying Zhang,et al.  Constraint Nets: A Semantic Model for Hybrid Dynamic Systems , 1995, Theor. Comput. Sci..

[23]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[24]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[25]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[26]  T. Bell,et al.  Molecular Trees: A New Branch of Chemistry , 1996, Science.

[27]  Tad Hogg,et al.  Controlling smart matter , 1996, cond-mat/9611024.

[28]  S. Clearwater Market-based control: a paradigm for distributed resource allocation , 1996 .

[29]  Tad Hogg,et al.  Quantum Smart Matter , 1996 .

[30]  Nicklas Rb How Cells Get the Right Chromosomes , 1997, Science.

[31]  R. Nicklas How Cells Get the Right Chromosomes , 1997, Science.

[32]  Gregory T. A. Kovacs,et al.  Computational methods for design and control of MEMS micromanipulator arrays , 1997 .

[33]  Radha Jagadeesan,et al.  Computing with Continuous Change , 1998, Sci. Comput. Program..