hGRGA: A scalable genetic algorithm using homologous gene schema replacement

Abstract In this article, we propose a new evolutionary algorithm, referred as h omologous G ene R eplacement G enetic A lgorithm (hGRGA) that includes a novel and generic operator called h omologous G ene R eplacement (hGR). The hGR operator improves the chromosomes in gene level to promote their overall functionality. The hGRGA effectively encodes the key idea of the natural evolutionary process that locates and utilizes good local schema present in the genes of a chromosome through hGR operator. The proposed hGRGA is evaluated and compared with two variants of GA and two other state-of-the-art evolutionary computing algorithms based on widely-used benchmark functions with a motivation to apply to wider varieties of optimization problems. The simulation results show that the new algorithm can offer faster convergence and better precision while finding optima. Our analysis shows that hGR is effectively a scalable operator that makes hGRGA well suited for real world problems with increasing size and complexity.

[1]  D. Werner,et al.  Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[2]  Horst Salzwedel,et al.  Variable Mutation Rate at Genetic Algorithms: Introduction of Chromosome Fitness in Connection with Multi-Chromosome Representation , 2013 .

[3]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[4]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[5]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[6]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[7]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[8]  Melanie Mitchell,et al.  Genetic algorithms: An overview , 1995, Complex..

[9]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[10]  L. Darrell Whitley,et al.  Cellular Genetic Algorithms , 1993, ICGA.

[11]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[12]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[13]  R. R. Saldanha,et al.  Improvements in genetic algorithms , 2001 .

[14]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[15]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[16]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[17]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[18]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[19]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[20]  L. Darrell Whitley,et al.  Optimization Using Distributed Genetic Algorithms , 1990, PPSN.

[21]  Chao-Xue Wang,et al.  A Novel Genetic Algorithm Based on Gene Therapy Theory , 2006 .

[22]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[23]  Johannes M. Dieterich,et al.  Empirical review of standard benchmark functions using evolutionary global optimization , 2012, ArXiv.

[24]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[25]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[26]  L. Darrell Whitley,et al.  An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.

[27]  M. Loomes,et al.  A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models , 2014, Biomolecules.

[28]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[29]  Nikolaus Hansen,et al.  Compilation of Results on the 2005 CEC Benchmark Function Set , 2005 .

[30]  Sumaiya Iqbal,et al.  A Homologous Gene Replacement based Genetic Algorithm , 2016, GECCO.

[31]  Madhu Chetty,et al.  Generalized Schemata Theorem Incorporating Twin Removal for Protein Structure Prediction , 2007, PRIB.

[32]  Licheng Jiao,et al.  A novel genetic algorithm based on immunity , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[33]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[34]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[35]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[36]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[37]  A. Townsend Genetic Algorithms – a Tutorial , 2003 .

[38]  Abdul Sattar,et al.  An Enhanced Genetic Algorithm for Ab Initio Protein Structure Prediction , 2016, IEEE Transactions on Evolutionary Computation.

[39]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[40]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[41]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[42]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[43]  Debasish Ghose,et al.  Detection of multiple source locations using a glowworm metaphor with applications to collective robotics , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[44]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[45]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[46]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[47]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[48]  Jolai Fariborz,et al.  A GENETIC ALGORITHM WITH MODIFIED CROSSOVER OPERATOR FOR A TWO-AGENT SCHEDULING PROBLEM , 2013 .

[49]  Zuren Feng,et al.  Multi-satellite control resource scheduling based on ant colony optimization , 2014, Expert Syst. Appl..

[50]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[51]  Byung Ro Moon,et al.  An empirical study on the synergy of multiple crossover operators , 2002, IEEE Trans. Evol. Comput..

[52]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[53]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[54]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[55]  Sumaiya Iqbal,et al.  Solving the multi-objective Vehicle Routing Problem with Soft Time Windows with the help of bees , 2015, Swarm Evol. Comput..

[56]  Victor O. K. Li,et al.  A social spider algorithm for global optimization , 2015, Appl. Soft Comput..

[57]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[58]  Abdul Sattar,et al.  Refining Genetic Algorithm twin removal for high-resolution protein structure prediction , 2012, 2012 IEEE Congress on Evolutionary Computation.

[59]  Kang Li A Gene-Based Genetic Algorithm for TSP , 2003 .

[60]  Wansheng Tang,et al.  Monkey Algorithm for Global Numerical Optimization , 2008 .

[61]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[62]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[63]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[64]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[65]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[66]  David E. Goldberg,et al.  Genetic and evolutionary algorithms come of age , 1994, CACM.

[67]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.

[68]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[69]  Andrew Lewis,et al.  Twin Removal in Genetic Algorithms for Protein Structure Prediction Using Low-Resolution Model , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[70]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[71]  Adrian Bonilla-Petriciolet,et al.  Intelligent Firefly Algorithm for Global Optimization , 2014 .

[72]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[73]  Theodore C. Belding,et al.  The Distributed Genetic Algorithm Revisited , 1995, ICGA.

[74]  Rakesh Angira,et al.  A Comparative Study of Differential Evolution Algorithms for Estimation of Kinetic Parameters , 2012 .

[75]  Martina Gorges-Schleuter,et al.  Explicit Parallelism of Genetic Algorithms through Population Structures , 1990, PPSN.

[76]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[77]  Maoguo Gong,et al.  Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition , 2014, IEEE Transactions on Evolutionary Computation.

[78]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[79]  Gregory F. Lawler Introduction to Stochastic Processes , 1995 .

[80]  Yongquan Zhou,et al.  A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution , 2015 .

[81]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.