Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia

[1]  J. Aliberti,et al.  Hemophagocytosis causes a consumptive anemia of inflammation , 2011, The Journal of experimental medicine.

[2]  I. Moura,et al.  A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients , 2004, Retrovirology.

[3]  A. Besarab,et al.  Iron supplementation to treat anemia in patients with chronic kidney disease , 2010, Nature Reviews Nephrology.

[4]  R. Paulson,et al.  Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. , 2010, The Journal of clinical investigation.

[5]  Philippe Dessen,et al.  Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia , 2010, The Journal of experimental medicine.

[6]  Charles B. Hall,et al.  Transferrin therapy ameliorates disease in β-thalassemic mice , 2010, Nature Medicine.

[7]  M. Cogné,et al.  Premature replacement of μ with α immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation , 2010, Proceedings of the National Academy of Sciences.

[8]  J. Abkowitz,et al.  The microcytic red cell and the anemia of inflammation. , 2009, The New England journal of medicine.

[9]  J. Cheung,et al.  TRPC3 Activation by Erythropoietin Is Modulated by TRPC6* , 2009, Journal of Biological Chemistry.

[10]  H. Ueno,et al.  A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. , 2009, Immunity.

[11]  S. Philipsen,et al.  Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. , 2008, Blood.

[12]  N. Andrews,et al.  The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. , 2008, Cell metabolism.

[13]  I. Moura,et al.  Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease , 2008, The Journal of experimental medicine.

[14]  R. Monteiro,et al.  Autoimmunity in IgA Deficiency: Revisiting the Role of IgA as a Silent Housekeeper , 2008, Journal of Clinical Immunology.

[15]  R. Paulson,et al.  BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. , 2007, Blood.

[16]  M. Socolovsky Molecular insights into stress erythropoiesis , 2007, Current opinion in hematology.

[17]  Jens H. Kuhn,et al.  Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses , 2007, Nature.

[18]  Olivier Hermine,et al.  Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1 , 2007, Nature.

[19]  S. Philipsen,et al.  Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice. , 2006, Blood.

[20]  M. Socolovsky,et al.  Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. , 2006, Blood.

[21]  D. Wojchowski,et al.  Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. , 2006, The Journal of clinical investigation.

[22]  M. Koury Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. , 2005, Experimental hematology.

[23]  E. Haddad,et al.  Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. , 2005, Journal of the American Society of Nephrology : JASN.

[24]  J. Woof,et al.  Mucosal immunoglobulins , 2005, Immunological reviews.

[25]  M. Arcasoy,et al.  Co‐operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor , 2005, British journal of haematology.

[26]  R. Paulson,et al.  BMP4 and Madh5 regulate the erythroid response to acute anemia. , 2005, Blood.

[27]  I. Moura,et al.  Identification of FcαRI as an Inhibitory Receptor that Controls Inflammation: Dual Role of FcRγ ITAM , 2005 .

[28]  C. Enns,et al.  Diferric transferrin regulates transferrin receptor 2 protein stability. , 2004, Blood.

[29]  M. Auerbach,et al.  Intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia: a multicenter, open-label, randomized trial. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  E. Haddad,et al.  Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. , 2004, Journal of the American Society of Nephrology : JASN.

[31]  R. Goldblum,et al.  Operation Everest II: Alterations in the immune system at high altitudes , 1988, Journal of Clinical Immunology.

[32]  D. Wojchowski,et al.  Attenuated signaling by a phosphotyrosine-null Epo receptor form in primary erythroid progenitor cells. , 2003, Blood.

[33]  R. Monteiro,et al.  IgA Fc receptors. , 2003, Annual review of immunology.

[34]  T. Leanderson,et al.  Joining Chain–Expressing and–Nonexpressing B Cell Populations in the Mouse , 2001, The Journal of experimental medicine.

[35]  M. Cooper,et al.  Identification of the Transferrin Receptor as a Novel Immunoglobulin (Ig)a1 Receptor and Its Enhanced Expression on Mesangial Cells in Iga Nephropathy , 2001, The Journal of experimental medicine.

[36]  Olivier Hermine,et al.  Caspase Activation Is Required for Terminal Erythroid Differentiation , 2001, The Journal of experimental medicine.

[37]  Sherie L. Morrison,et al.  The N-Glycans Determine the Differential Blood Clearance and Hepatic Uptake of Human Immunoglobulin (Ig)a1 and Iga2 Isotypes , 2000, The Journal of experimental medicine.

[38]  T. Honjo,et al.  High Pathogenic Potential of Low-Affinity Autoantibodies in Experimental Autoimmune Hemolytic Anemia , 1999, The Journal of experimental medicine.

[39]  C. Kellendonk,et al.  The glucocorticoid receptor is required for stress erythropoiesis. , 1999, Genes & development.

[40]  B. Beattie,et al.  Identification of the Erythropoietin Receptor Domain Required for Calcium Channel Activation* , 1999, The Journal of Biological Chemistry.

[41]  Nancy Andrews,et al.  Transferrin receptor is necessary for development of erythrocytes and the nervous system , 1999, Nature Genetics.

[42]  G. Stassi,et al.  Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. , 1999, Blood.

[43]  P. Bjorkman,et al.  Crystal Structure of the Hemochromatosis Protein HFE and Characterization of Its Interaction with Transferrin Receptor , 1998, Cell.

[44]  D. Richardson,et al.  The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. , 1997, Biochimica et biophysica acta.

[45]  V. Broudy,et al.  Interaction of stem cell factor and its receptor c-kit mediates lodgment and acute expansion of hematopoietic cells in the murine spleen. , 1996, Blood.

[46]  C. Bozzini,et al.  The Biology of Stress Erythropoiesis and Erythropoietin Production a , 1994, Annals of the New York Academy of Sciences.

[47]  M. Koury,et al.  Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. , 1993, Blood.

[48]  P. Ponka,et al.  Transferrin-receptor-independent but iron-dependent proliferation of variant Chinese hamster ovary cells. , 1992, Experimental cell research.

[49]  S. Lev,et al.  Dimerization and activation of the kit receptor by monovalent and bivalent binding of the stem cell factor. , 1992, The Journal of biological chemistry.

[50]  S. Lev,et al.  A recombinant ectodomain of the receptor for the stem cell factor (SCF) retains ligand-induced receptor dimerization and antagonizes SCF-stimulated cellular responses. , 1992, Journal of Biological Chemistry.

[51]  E.,et al.  Progress in Understanding the Pathogenesis of the Anemia of Chronic Disease , 1992 .

[52]  M. Sporn,et al.  Hypoxia upregulates the synthesis of tgf-β1 by human dermal fibroblasts , 1991 .

[53]  J. Mestecky,et al.  Selective transport of IgA. Cellular and molecular aspects. , 1991, Gastroenterology clinics of North America.

[54]  J. Tainer,et al.  Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis , 1990, Cell.

[55]  M. Kerr,et al.  The structure and function of human IgA. , 1990, The Biochemical journal.

[56]  M. Koury,et al.  Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. , 1990, Science.

[57]  C. Finch,et al.  Occupancy of the iron binding sites of human transferrin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Goldwasser Erythropoietin and its mode of action. , 1984, Blood cells.

[59]  E. Russell Hereditary anemias of the mouse: a review for geneticists. , 1979, Advances in genetics.

[60]  J. Cook,et al.  Evaluation of the iron status of a population. , 1976, Blood.