Enthalpy difference between conformations of normal alkanes: Intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane.

In this paper, an extra error source for high-quality ab initio calculation of conformation equilibrium in normal alkanes-intramolecular basis set superposition error (BSSE)-is discussed. Normal butane (n-butane) and normal hexane (n-hexane) are used as representative examples. Single-point energy difference and BSSE values of trans and gauche conformations for n-butane (and trans-trans-trans and gauche-gauche-gauche conformations for n-hexane) were calculated using popular electron correlation methods: The second-order Moller-Plesset (MP2), the fourth-order Moller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation [CCSD(T)] levels of theory. Extrapolation to the complete basis set is applied. The difference between BSSE-corrected and uncorrected relative energy values ranges from approximately 100 cal/mol (in case of n-butane) to more than 1000 cal/mol (in case of n-hexane). The influence of basis set type (Pople or Dunning) and size [up to 6-311G(3df,3pd) and aug-cc-pVQZ] is discussed.

[1]  Roman M. Balabin Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon , 2008 .

[2]  Roman M. Balabin,et al.  Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra , 2008 .

[3]  Roman M. Balabin,et al.  Gasoline classification by source and type based on near infrared (NIR) spectroscopy data , 2008 .

[4]  Pavel Hobza,et al.  Evaluation of the intramolecular basis set superposition error in the calculations of larger molecules: [n]helicenes and Phe‐Gly‐Phe tripeptide , 2008, J. Comput. Chem..

[5]  P. Salvador,et al.  Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: a solution to the problem. , 2008, The Journal of chemical physics.

[6]  Tanja van Mourik,et al.  Comment on “Aromatic‐Backbone Interactions in Model α‐Helical Peptides” [Palermo et al., J Comput Chem 2007, 28, 1208] , 2008, J. Comput. Chem..

[7]  József Csontos,et al.  Reply to “Comment on Aromatic‐Backbone Interactions in Model α‐Helical Peptides” , 2008, J. Comput. Chem..

[8]  T. van Mourik,et al.  Comparison of ab initio and DFT electronic structure methods for peptides containing an aromatic ring: effect of dispersion and BSSE. , 2007, The journal of physical chemistry. A.

[9]  B. Hajgató,et al.  Probing molecular conformations in momentum space: the case of n-pentane. , 2007, The Journal of chemical physics.

[10]  Roman M. Balabin,et al.  Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction , 2007 .

[11]  Leo Frederick Holroyd,et al.  Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers , 2007 .

[12]  Michael C. Owen,et al.  Aromatic‐backbone interactions in model α‐helical peptides , 2007, J. Comput. Chem..

[13]  Fuqiang Shi Theoretical Investigation on the Nature of Intramolecular Interactions in Aminocyclopentadienyl Ruthenium Hydride Complexes , 2006 .

[14]  Andrew C. Simmonett,et al.  Popular theoretical methods predict benzene and arenes to be nonplanar. , 2006, Journal of the American Chemical Society.

[15]  S. Fomine,et al.  Are water–aromatic complexes always stabilized due to π–H interactions? LMP2 study , 2005 .

[16]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[17]  S. Suhai,et al.  Studies on Structure and Conformational Stability of Free Canonical 2-Deoxyribonucleosides: Approximate SCC-DFTB and LMP2 Methods , 2004 .

[18]  M. Deleuze,et al.  High-level theoretical study of the conformational equilibrium of n-pentane , 2002 .

[19]  C. Ghio,et al.  Interplay of intra‐ and intermolecular H‐bonds for the addition of a water molecule to the neutral and N‐protonated forms of noradrenaline , 2002 .

[20]  Yoon Sup Lee,et al.  Effects of Intramolecular Basis Set Superposition Error on Conformational Energy Difference of 1,2-Difluoroethane and 1,2-Dimethoxyethane † , 2002 .

[21]  J. Dannenberg,et al.  Effect of Basis Set Superposition Error (BSSE) upon ab Initio Calculations of Organic Transition States , 2001 .

[22]  István Mayer,et al.  Second order Mo/ller–Plesset perturbation theory without basis set superposition error , 1998 .

[23]  István Mayer,et al.  THE CHEMICAL HAMILTONIAN APPROACH FOR TREATING THE BSSE PROBLEM OF INTERMOLECULAR INTERACTIONS , 1998 .

[24]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[25]  William A. Goddard,et al.  Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum Mechanical Calculations (LMP2/cc-pVTZ) , 1997 .

[26]  J. J. Dannenberg,et al.  A Theoretical Study of the Endo/Exo Selectivity of the Diels−Alder Reaction between Cyclopropene and Butadiene , 1997 .

[27]  Justin T. Fermann,et al.  The torsional conformations of butane: Definitive energetics from ab initio methods , 1997 .

[28]  F. Jensen THE MAGNITUDE OF INTRAMOLECULAR BASIS SET SUPERPOSITION ERROR , 1996 .

[29]  J. Almlöf,et al.  On the accuracy of ab initio force constant calculations with respect to basis sets , 1989 .

[30]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[31]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[32]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .