Existence, Uniqueness, and Asymptotic Behavior for Nonlocal Parabolic Problems with Dominating Gradient Terms

In this paper we deal with the well-posedness of Dirichlet problems associated to nonlocal Hamilton--Jacobi parabolic equations in a bounded, smooth domain $\Omega$, in the case when the classical boundary condition may be lost. We address the problem for both coercive and noncoercive Hamiltonians: for coercive Hamiltonians, our results rely more on the regularity properties of the solutions, while noncoercive case are related to optimal control problems and the arguments are based on a careful study of the dynamics near the boundary of the domain. Comparison principles for bounded sub- and supersolutions are obtained in the context of viscosity solutions with generalized boundary conditions, and consequently we obtain the existence and uniqueness of solutions in $C(\bar{\Omega} \times [0,+\infty))$ by the application of Perron's method. Finally, we prove that the solution of these problems converges to the solutions of the associated stationary problem as $t \to +\infty$ under suitable assumptions on the...

[1]  E. Chasseigne The Dirichlet problem for some nonlocal diffusion equations , 2007, Differential and Integral Equations.

[2]  Olivier Alvarez,et al.  Viscosity solutions of nonlinear integro-differential equations , 1996 .

[3]  G. Barles,et al.  The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems , 1995 .

[4]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[5]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[6]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[7]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[8]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[9]  Guy Barles,et al.  Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians , 2014, Calculus of Variations and Partial Differential Equations.

[10]  Luis Silvestre,et al.  Regularity theory for fully nonlinear integro‐differential equations , 2007, 0709.4681.

[11]  E. Radkevich,et al.  Equations with nonnegative characteristic form. I , 2009 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[14]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[15]  Guy Barles,et al.  Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..

[16]  Guy Barles,et al.  On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations , 2004 .

[17]  Erwin Topp,et al.  Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms , 2013, 1305.3478.

[18]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[19]  Sayah Awatif,et al.  Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels , 2007 .

[20]  Guy Barles,et al.  A short proof of the $C^{0,\alpha}$--regularity of viscosity subsolutions for superquadratic viscous Hamilton-Jacobi equations and applications , 2009, 0904.2309.

[21]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[22]  Guy Barles,et al.  REMARKS ON THE DIRICHLET AND STATE-CONSTRAINT PROBLEMS FOR QUASILINEAR PARABOLIC EQUATIONS , 2003 .

[23]  G. Barles,et al.  Comparison principle for dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations , 1990 .

[24]  Sayah Awatif Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité , 1991 .

[25]  H. W. Knobloch On optimal control problems with state space constraints , 1975 .

[26]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[27]  G. Barles,et al.  A STRONG COMPARISON RESULT FOR THE BELLMAN EQUATION ARISING IN STOCHASTIC EXIT TIME CONTROL PROBLEMS AND ITS APPLICATIONS , 1998 .

[28]  E. V. Radkevich Equations with nonnegative characteristic form. II , 2009 .

[29]  Alessio Porretta,et al.  Hölder estimates for degenerate elliptic equations with coercive Hamiltonians , 2010 .

[30]  H. Soner Optimal control with state-space constraint I , 1986 .

[31]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[32]  Thierry Tabet Tchamba Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian , 2009, Asymptot. Anal..

[33]  F. D. Lio,et al.  COMPARISON RESULTS FOR QUASILINEAR EQUATIONS IN ANNULAR DOMAINS AND APPLICATIONS1* , 2002 .

[34]  G. Barles,et al.  On the Dirichlet Problem for Second-Order Elliptic Integro-Differential Equations , 2008 .

[35]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .