Repeated passive visual experience modulates spontaneous and non-familiar stimulievoked neural activity

Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.

[1]  William L. Hauser,et al.  Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions , 2023, Cell reports.

[2]  S. Molotchnikoff,et al.  Adaptation-induced plasticity in the sensory cortex. , 2022, Journal of neurophysiology.

[3]  C. Stringer,et al.  Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas , 2022, Neuron.

[4]  Michael J. Berry,et al.  Novel stimuli evoke excess activity in the mouse primary visual cortex , 2022, Proceedings of the National Academy of Sciences.

[5]  M. Bear,et al.  Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles , 2022, Frontiers in Neural Circuits.

[6]  Jeffrey P. Gavornik,et al.  Expectation violations produce error signals in mouse V1 , 2022, bioRxiv.

[7]  R. Yuste,et al.  Long-term stability of cortical ensembles , 2021, eLife.

[8]  G. Goodhill,et al.  Spontaneous and evoked activity patterns diverge over development , 2021, eLife.

[9]  Alexander A. Chubykin,et al.  Visual Familiarity Induced 5-Hz Oscillations and Improved Orientation and Direction Selectivities in V1 , 2021, The Journal of Neuroscience.

[10]  Nathalie L Rochefort,et al.  Defying Expectations: How Neurons Compute Prediction Errors in Visual Cortex , 2020, Neuron.

[11]  R. S. Koolschijn,et al.  Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex , 2020, PLoS biology.

[12]  N. H. Sabah Neurons , 2020, Neuromuscular Fundamentals.

[13]  Lindsey L. Glickfeld,et al.  Magnitude, time-course and specificity of rapid adaptation across mouse visual areas. , 2020, Journal of neurophysiology.

[14]  Jordan P. Hamm,et al.  Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents , 2020, Frontiers in Neural Circuits.

[15]  Mark T. Harnett,et al.  Opposing Somatic and Dendritic Expression of Stimulus-Selective Response Plasticity in Mouse Primary Visual Cortex , 2020, Frontiers in Cellular Neuroscience.

[16]  Jinghong Xu,et al.  Cross-Modal Competition: The Default Computation for Multisensory Processing , 2018, The Journal of Neuroscience.

[17]  R. Yuste,et al.  An increase in spontaneous activity mediates visual habituation , 2018, bioRxiv.

[18]  Georg B. Keller,et al.  Predictive Processing: A Canonical Cortical Computation , 2018, Neuron.

[19]  F. D. Lange,et al.  How Do Expectations Shape Perception? , 2018, Trends in Cognitive Sciences.

[20]  Alexander A. Chubykin,et al.  Oscillatory Encoding of Visual Stimulus Familiarity , 2018, The Journal of Neuroscience.

[21]  Renée Emunah SCENES , 2018, A Couple of Soles.

[22]  Nathalie L Rochefort,et al.  Action and learning shape the activity of neuronal circuits in the visual cortex , 2018, Current Opinion in Neurobiology.

[23]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[24]  N. Crowder,et al.  Adaptation to stimulus orientation in mouse primary visual cortex , 2018, The European journal of neuroscience.

[25]  Laurence Aitchison,et al.  With or without you: predictive coding and Bayesian inference in the brain , 2017, Current Opinion in Neurobiology.

[26]  Floris P de Lange,et al.  Prior expectations induce prestimulus sensory templates , 2017, Proceedings of the National Academy of Sciences.

[27]  Sonja B. Hofer,et al.  Synaptic organization of visual space in primary visual cortex , 2017, Nature.

[28]  Thomas Deneux,et al.  Review: How do spontaneous and sensory-evoked activities interact? , 2017, Neurophotonics.

[29]  Adam Ranson Stability and Plasticity of Contextual Modulation in the Mouse Visual Cortex , 2016, bioRxiv.

[30]  John P. Cunningham,et al.  Reorganization between preparatory and movement population responses in motor cortex , 2016, Nature Communications.

[31]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[32]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[33]  David E. Whitney,et al.  Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex , 2016, Nature Neuroscience.

[34]  Hey-Kyoung Lee,et al.  Cross-modal synaptic plasticity in adult primary sensory cortices , 2015, Current Opinion in Neurobiology.

[35]  Takaki Komiyama,et al.  Learning enhances the relative impact of top-down processing in the visual cortex , 2015, Nature Neuroscience.

[36]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[37]  Jeffrey P. Gavornik,et al.  Erratum: Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1 , 2015, Nature Neuroscience.

[38]  Mark F. Bear,et al.  Visual recognition memory, manifest as long-term habituation, requires synaptic plasticity in V1 , 2015, Nature Neuroscience.

[39]  S. Solomon,et al.  Moving Sensory Adaptation beyond Suppressive Effects in Single Neurons , 2014, Current Biology.

[40]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[41]  Aneesha K. Suresh,et al.  Sleep promotes cortical response potentiation following visual experience. , 2014, Sleep.

[42]  Mani Ramaswami,et al.  Network Plasticity in Adaptive Filtering and Behavioral Habituation , 2014, Neuron.

[43]  Mark F. Bear,et al.  Learned spatiotemporal sequence recognition and prediction in primary visual cortex , 2014, Nature Neuroscience.

[44]  Inbal Israely,et al.  Synaptic competition in structural plasticity and cognitive function , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[46]  E. Quinlan,et al.  Repetitive visual stimulation enhances recovery from severe amblyopia. , 2013, Learning & memory.

[47]  Lyes Bachatene,et al.  Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex , 2013, PloS one.

[48]  Karen Zito,et al.  Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening , 2012, Proceedings of the National Academy of Sciences.

[49]  M. Stryker,et al.  Development and Plasticity of the Primary Visual Cortex , 2012, Neuron.

[50]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[51]  Karl J. Friston,et al.  The influence of spontaneous activity on stimulus processing in primary visual cortex , 2012, NeuroImage.

[52]  Y. Dan,et al.  Activity Recall in Visual Cortical Ensemble , 2012, Nature Neuroscience.

[53]  C. Bowden,et al.  Waves , 2011 .

[54]  Tian-Miao Hua,et al.  Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. , 2011, Journal of neurophysiology.

[55]  P. Berkes,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[56]  Jim M. Monti,et al.  Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream , 2010, The Journal of Neuroscience.

[57]  Hongbo Jia,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[58]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[59]  Donald A. Wilson,et al.  Habituation revisited: An updated and revised description of the behavioral characteristics of habituation , 2009, Neurobiology of Learning and Memory.

[60]  Dario L Ringach,et al.  Spontaneous and driven cortical activity: implications for computation , 2009, Current Opinion in Neurobiology.

[61]  A. B. Bonds,et al.  Relationship between spontaneous and evoked spike-time correlations in primate visual cortex. , 2009, Journal of neurophysiology.

[62]  Feng Qi Han,et al.  Reverberation of Recent Visual Experience in Spontaneous Cortical Waves , 2008, Neuron.

[63]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[64]  Valentin Dragoi,et al.  Adaptive coding of visual information in neural populations , 2008, Nature.

[65]  Feng Qi Han,et al.  Rapid learning in cortical coding of visual scenes , 2007, Nature Neuroscience.

[66]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[67]  D. McCormick,et al.  Enhancement of visual responsiveness by spontaneous local network activity in vivo. , 2007, Journal of neurophysiology.

[68]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[69]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[70]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[71]  D. Bavelier,et al.  Cross-modal plasticity: where and how? , 2002, Nature Reviews Neuroscience.

[72]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[73]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[74]  P. Monson Nutritionally associated increased carbon dioxide production SS TALPERS, DJ ROMBERGER, SB BUNCE, ET AL University of Kansas Medical Center, Kansas City , 1993 .

[75]  F. Wandosell,et al.  Cortex , 2021, Encyclopedic Dictionary of Archaeology.

[76]  B. Mcwilliams,et al.  Cognitive Function , 2021, Encyclopedia of Gerontology and Population Aging.

[77]  M. Webster Visual Adaptation. , 2015, Annual review of vision science.

[78]  V. Casagrande,et al.  Processing in the Primary Visual Cortex , 2011 .

[79]  I. Bókkon,et al.  Emergence and Transmission of Visual Awareness through Optical Coding in the Brain: a Redox Molecular Hypothesis on Visual Mental Imagery , 2009 .

[80]  T. Hensch Critical period mechanisms in developing visual cortex. , 2005, Current topics in developmental biology.

[81]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[82]  W. Kabsch,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.