Coevolutionary search for optimal materials in the space of all possible compounds

Over the past decade, evolutionary algorithms, data mining, and other methods showed great success in solving the main problem of theoretical crystallography: finding the stable structure for a given chemical composition. Here, we develop a method that addresses the central problem of computational materials science: the prediction of material(s), among all possible combinations of all elements, that possess the best combination of target properties. This nonempirical method combines our new coevolutionary approach with the carefully restructured “Mendelevian” chemical space, energy filtering, and Pareto optimization to ensure that the predicted materials have optimal properties and a high chance to be synthesizable. The first calculations, presented here, illustrate the power of this approach. In particular, we find that diamond (and its polytypes, including lonsdaleite) are the hardest possible materials and that bcc-Fe has the highest zero-temperature magnetization among all possible compounds.

[1]  Richard B Kaner,et al.  Osmium diboride, an ultra-incompressible, hard material. , 2005, Journal of the American Chemical Society.

[2]  Artem R. Oganov,et al.  A model of hardness and fracture toughness of solids , 2019, Journal of Applied Physics.

[3]  Jianxin Zhong,et al.  Z-BN: a novel superhard boron nitride phase. , 2012, Physical chemistry chemical physics : PCCP.

[4]  Gui Yang,et al.  Phase stability and physical properties of technetium borides: A first-principles study , 2014 .

[5]  Haines,et al.  Phase transitions in ruthenium dioxide up to 40 GPa: Mechanism for the rutile-to-fluorite phase transformation and a model for the high-pressure behavior of stishovite SiO2. , 1993, Physical review. B, Condensed matter.

[6]  Hongyan Wang,et al.  Exploring high-pressure FeB2: Structural and electronic properties predictions , 2016 .

[7]  Shuli Wei,et al.  A first-principles investigation of a new hard multi-layered MnB2 structure , 2017 .

[8]  Artem R. Oganov,et al.  Simple and accurate model of fracture toughness of solids , 2018, Journal of Applied Physics.

[9]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[10]  X. S. Chen,et al.  First-principle calculations , 2006 .

[11]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[12]  V. M. Goldschmidt,et al.  Crystal structure and chemical constitution , 1929 .

[13]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[14]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[15]  A. U.S.,et al.  Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .

[16]  Adam Lipowski,et al.  Roulette-wheel selection via stochastic acceptance , 2011, ArXiv.

[17]  Artem R. Oganov,et al.  Structure, Stability and Mechanical Properties of Boron-Rich Mo-B Phases: A Computational Study. , 2020, The journal of physical chemistry letters.

[18]  Pierre VILLARS,et al.  A new appoach to describe elemental-property parameters , 2008 .

[19]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[20]  A. Oganov,et al.  Crystal fingerprint space--a novel paradigm for studying crystal-structure sets. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Mario Valle,et al.  Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .

[22]  Bing Li,et al.  First-principles calculation of the indentation strength ofFeB4 , 2014 .

[23]  Olle Eriksson,et al.  Transition-metal dioxides with a bulk modulus comparable to diamond , 1998 .

[24]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[25]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[26]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[27]  Qiang Zhu,et al.  Variable-composition structural optimization and experimental verification of MnB3 and MnB4. , 2014, Physical chemistry chemical physics : PCCP.

[28]  Vadim V. Brazhkin,et al.  Transformations of C60 fullerite under high-pressure high-temperature conditions , 1996 .

[29]  Qingyu Hou,et al.  New predicted ground state and high pressure phases of TcB3 and TcB4: First-principles , 2018 .

[30]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  Russell J. Hemley,et al.  Low-Compressibility Carbon Nitrides , 1996, Science.

[33]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[34]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[35]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[36]  Valerio Rossi Albertini,et al.  Superhard rhenium diboride films: Preparation and characterization , 2008 .

[37]  Shigeru Okada,et al.  Preparation of single crystals of MoB2 by the aluminium-flux technique and some of their properties , 1987 .

[38]  Dragana Živković,et al.  A new superhard material: Osmium diboride OsB2 , 2006 .

[39]  Tetsuo Oikawa,et al.  Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative boron carbide nitride (BC2N) under high pressure/high temperature conditions , 1993 .

[40]  Zahed Allahyari,et al.  Computational discovery of hard and superhard materials , 2019, Journal of Applied Physics.

[41]  Artem R. Oganov,et al.  Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2 , 2011 .

[42]  Paul F. McMillan,et al.  High-Pressure, High-Temperature Synthesis and Characterization of Boron Suboxide (B6O) , 1998 .

[43]  Wei-li Wang,et al.  First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds , 2014 .

[44]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[45]  Qiang Zhu,et al.  Denser than diamond: Ab initio search for superdense carbon allotropes , 2011 .

[46]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[47]  Jianxin Zhong,et al.  First-principles study of a novel superhard boron nitride phase , 2012 .

[48]  Richard B. Kaner,et al.  Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2 , 2008 .

[49]  Chaoyu He,et al.  Structures, stability, mechanical and electronic properties of α-boron and α*-boron , 2013 .

[50]  R. F. Zhang,et al.  Mechanical properties and hardness of boron and boron-rich solids , 2011 .

[51]  Jean-Michel Leger,et al.  Synthesis and Design of Superhard Materials , 2001 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[54]  Pierre Villars,et al.  The Structures of Binary Compounds , 1990 .

[55]  Zahed Allahyari,et al.  Multi-objective Optimization as a Tool for Material Design , 2018, Handbook of Materials Modeling.

[56]  Ralf Riedel,et al.  Materials harder than diamond , 1992 .

[57]  Yunkun Zhang,et al.  Unraveling Stable Vanadium Tetraboride and Triboride by First-Principles Computations , 2015 .

[58]  R. Hinton,et al.  First principles. , 2016, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[59]  Yinwei Li,et al.  High-Energy Density and Superhard Nitrogen-Rich B-N Compounds. , 2015, Physical review letters.

[60]  B. Blanzat,et al.  Materials potentially harder than diamond: Quenchable high-pressure phases of transition metal dioxides , 1994 .

[61]  Qiang Zhu,et al.  Novel stable compounds in the Mg-O system under high pressure. , 2013, Physical chemistry chemical physics : PCCP.

[62]  A. Oganov,et al.  Computational Search for Novel Hard Chromium-Based Materials. , 2017, The journal of physical chemistry letters.

[63]  Haiyan Yan,et al.  New crystal structure and physical properties of TcB from first-principles calculations , 2015 .

[64]  Kirill Kovnir,et al.  BP: synthesis and properties of boron phosphide , 2016 .

[65]  Pierre VILLARS,et al.  PAULING FILE verifies / reveals 12 principles in materials science supporting four cornerstones given by Nature , 2013 .

[66]  D Rolles,et al.  Time-resolved measurement of interatomic coulombic decay in Ne2. , 2013, Physical review letters.

[67]  Julietta V. Rau,et al.  New Hard and Superhard Materials: RhB1.1 and IrB1.35 , 2009 .

[68]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[69]  A. Liu,et al.  Prediction of New Low Compressibility Solids , 1989, Science.

[70]  Zheng Zhong,et al.  Electronic structures and mechanical properties of iron borides from first principles , 2014 .

[71]  Rong Yu,et al.  Prediction on technetium triboride from first-principles calculations , 2017 .

[72]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[73]  Michael Sung,et al.  Carbon nitride and other speculative superhard materials , 1996 .

[74]  Pei Wang,et al.  Vanadium Diboride (VB2) Synthesized at High Pressure: Elastic, Mechanical, Electronic, and Magnetic Properties and Thermal Stability. , 2018, Inorganic chemistry.

[75]  Artem R. Oganov,et al.  Structure prediction drives materials discovery , 2019, Nature Reviews Materials.

[76]  Jeffrey K. Nagle,et al.  Atomic polarizability and electronegativity , 1990 .

[77]  Faming Gao,et al.  Theoretical model of intrinsic hardness , 2006 .

[78]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[79]  A. E. Ringwood,et al.  The principles governing trace element distribution during magmatic crystallization Part I: The influence of electronegativity , 1955 .

[80]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[81]  Mao Wen,et al.  Correlation between hardness and bond orientation of vanadium borides , 2014 .

[82]  F. Trotta,et al.  PREPARATION AND CHARACTERIZATION OF , 1996 .

[83]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[84]  Yongcheng Liang,et al.  An unusual variation of stability and hardness in molybdenum borides , 2012 .

[85]  Hui Wang,et al.  Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles , 2010 .

[86]  Artem R Oganov,et al.  New Tungsten Borides, Their Stability and Outstanding Mechanical Properties. , 2018, The journal of physical chemistry letters.

[87]  Yonghui Du,et al.  Hardness of FeB4: density functional theory investigation. , 2014, The Journal of chemical physics.

[88]  Sergey V. Ovsyannikov,et al.  Peierls distortion, magnetism, and high hardness of manganese tetraboride , 2014 .