Voronoi-Based Potentially Visible Set and Visibility Query Algorithms

In this paper, we propose the concept of Voronoi-based potentially visible set, called V\text underscore PVS, to facilitate the visibility computation. Given a polygon $P$, we first compute the Voronoi diagram of $P$, i.e., $\text{VD}(P)$. Then we refine $\text{VD}(P)$ into $\text{VD}(P')$, so that $\text{VD}(P')$ only contains triangular or quadrangular cells. For each Voronoi edge, a V\text underscore PVS is computed, which stores the visibility information of the Voronoi vertices and critical points on the edge. Based on the V\text underscore PVS, we can fast query the visibility polygons of an arbitrary point, a segment or a trajectory, a region, and a moving point using a uniform data structure.

[1]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[2]  B. Joe,et al.  Corrections to Lee's visibility polygon algorithm , 1987, BIT.

[3]  Robert E. Tarjan,et al.  Planar Point Location Using Persistent Search Trees a , 1989 .

[4]  M. Ghodsi,et al.  A Practical Approach for Planar Visibility Maintenance , 2009 .

[5]  Chenglei Yang,et al.  A system framework and key techniques for multi-user cooperative interaction in virtual museum based on Voronoi diagram , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[6]  Ovidiu Daescu,et al.  Maintaining Visibility of a Polygon with a Moving Point of View , 1996, Inf. Process. Lett..

[7]  Daniel Cohen-Or,et al.  Efficient cells‐and‐portals partitioning , 2006, Comput. Animat. Virtual Worlds.

[8]  Leonidas J. Guibas,et al.  Visibility Queries and Maintenance in Simple Polygons , 2002, Discret. Comput. Geom..

[9]  D. T. Lee,et al.  Visibility of a simple polygon , 1983, Comput. Vis. Graph. Image Process..

[10]  Daut Daman,et al.  Crowd Rendering Optimization for Virtual Heritage System , 2009 .

[11]  Rui Wang,et al.  Design of a Walkthrough System for Virtual Museum Based on Voronoi Diagram , 2006, 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering.

[12]  Mohammad Ghodsi,et al.  Space/query-time tradeoff for computing the visibility polygon , 2009, Comput. Geom..

[13]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[14]  Prosenjit Bose,et al.  Efficient visibility queries in simple polygons , 2002, Comput. Geom..

[15]  T. Asano An Efficient Algorithm for Finding the Visibility Polygon for a Polygonal Region with Holes , 1985 .

[16]  Subir Kumar Ghosh,et al.  Visibility Algorithms in the Plane , 2007 .

[17]  Leonidas J. Guibas,et al.  The robot localization problem in two dimensions , 1992, SODA '92.

[18]  Frederick P. Brooks,et al.  Towards image realism with interactive update rates in complex virtual building environments , 1990, I3D '90.

[19]  Mohammad Ghodsi,et al.  Query point visibility computation in polygons with holes , 2008, Comput. Geom..

[20]  Daniel Cohen-Or,et al.  Efficient cells-and-portals partitioning: Research Articles , 2006 .

[21]  Sanjiv Kapoor,et al.  Visibility queries in a polygonal region , 2009, Comput. Geom..

[22]  Hiromasa Suzuki,et al.  Polygon visibility ordering via Voronoi diagrams , 2007, The Visual Computer.

[23]  Georges Dumont,et al.  Morphology independent motion retrieval and control , 2009 .

[24]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.