Subordination and Superordination on Schwarzian Derivatives

Let the functions be analytic and let be analytic univalent in the unit disk. Using the methods of differential subordination and superordination, sufficient conditions involving the Schwarzian derivative of a normalized analytic function are obtained so that either or . As applications, sufficient conditions are determined relating the Schwarzian derivative to the starlikeness or convexity of .

[1]  V. Ravichandran,et al.  CLASSES OF MEROMORPHIC α-CONVEX FUNCTIONS , 2010 .

[2]  S. Lee,et al.  Subclasses of Multivalent Starlike and Convex Functions , 2009 .

[3]  Sanford S. Miller,et al.  Briot-Bouquet differential superordinations and sandwich theorems , 2007 .

[4]  T. N. Shanmugam,et al.  Differential sandwich theorems for some subclasses of analytic functions associated with linear operator , 2007, Appl. Math. Comput..

[5]  S. Owa,et al.  Double Subordination-Preserving Properties for Certain Integral Operators , 2007 .

[6]  H. M. Srivastava,et al.  A class of nonlinear integral operators preserving subordination and superordination , 2007 .

[7]  T. N. Shanmugam,et al.  Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations , 2006 .

[8]  S. Sivasubramanian,et al.  On sandwich theorems for some classes of analytic functions , 2006, Int. J. Math. Math. Sci..

[9]  T. Bulboacă Sandwich-type theorems for a class of integral operators , 2006 .

[10]  Dinggong Yang,et al.  SOME CRITERIA FOR STARLIKENESS AND STRONGLY STARLIKENESS , 2005 .

[11]  Sanford S. Miller,et al.  Subordinants of differential superordinations , 2003 .

[12]  T. Bulboacă CLASSES OF FIRST-ORDER DIFFERENTIAL SUPERORDINATIONS , 2002 .

[13]  S. Owa,et al.  An application of differential subordinations and some criteria for univalency , 1990, Bulletin of the Australian Mathematical Society.

[14]  V. Ravichandran,et al.  Differential subordination and superordination of analytic functions defined by the multiplier transformation , 2009 .

[15]  Rosihan M. Ali,et al.  Subordination and Superordination of the Liu-Srivastava Linear Operator on Meromorphic Functions , 2008 .

[16]  K. G. Subramanian,et al.  DIFFERENTIAL SANDWICH THEOREMS FOR CERTAIN ANALYTIC FUNCTIONS , 2008 .

[17]  T. Bulboacă A class of double subordination-preserving integral operators , 2004 .

[18]  Teodor Bulboacǎ,et al.  A class of superordination-preserving integral operators , 2002 .