Monotone Operators and the Proximal Point Algorithm

For the problem of minimizing a lower semicontinuous proper convex function f on a Hilbert space, the proximal point algorithm in exact form generates a sequence $\{ z^k \} $ by taking $z^{k + 1} $ to be the minimizes of $f(z) + ({1 / {2c_k }})\| {z - z^k } \|^2 $, where $c_k > 0$. This algorithm is of interest for several reasons, but especially because of its role in certain computational methods based on duality, such as the Hestenes-Powell method of multipliers in nonlinear programming. It is investigated here in a more general form where the requirement for exact minimization at each iteration is weakened, and the subdifferential $\partial f$ is replaced by an arbitrary maximal monotone operator T. Convergence is established under several criteria amenable to implementation. The rate of convergence is shown to be “typically” linear with an arbitrarily good modulus if $c_k $ stays large enough, in fact superlinear if $c_k \to \infty $. The case of $T = \partial f$ is treated in extra detail. Applicati...

[1]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[2]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[3]  G. Minty On the monotonicity of the gradient of a convex function. , 1964 .

[4]  J. Moreau Sur la fonction polaire d'une fonction semi-continue supérieurement , 1964 .

[5]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[6]  R. Rockafellar LEVEL SETS AND CONTINUITY OF CONJUGATE CONVEX FUNCTIONS , 1966 .

[7]  M. Hestenes Multiplier and gradient methods , 1969 .

[8]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[9]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[10]  A. Auslender Problemes de Minimax via l'Analyse Convexe et les Inegalites Variationnelles: Theorie et Algorithmes. , 1972 .

[11]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[12]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[13]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..

[14]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[15]  Dimitri P. Bertsekas,et al.  Multiplier methods: A survey , 1975, at - Automatisierungstechnik.

[16]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .